Backward and Central Difference
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/649745/image.png)
Given that x =10 and delta_x = 0.4,
Is there a better way of writing this code?
x = 10;
delta_x = 0.4;
backward_difference = ((2*f(x)-5*f(x-dx)+4*f(x-2*dx)-f(x-3*dx))/dx^2);
central_difference = (-f(x+2*dx)+16*f(x+dx)-30*f(x)+16*f(x-dx)-f(x-2*dx))/(12*(dx^2));
2 Commenti
Joseph Cheng
il 11 Giu 2021
Modificato: Joseph Cheng
il 11 Giu 2021
Have you already defined "f" as an anonymous function or symbolic function? Otherwise if "f" is an array you would be indexing "f" in a non-integer value
Risposta accettata
J. Alex Lee
il 11 Giu 2021
I guess the answer depends what you want to do with those finite difference approximations. If you want to use it in an algorithm to solve ODEs, your strategy won't work because you don't a priori have a functional form.
This would be a typical matrix math way (assuming your coefficients are correct, i won't check)
cb = [-1,4,-5,2];
cc = [-1,16,-30,16,-1]/12;
fun = @(x) x.^3+sin(x);
funp = @(x) 3*x.^2 + cos(x);
funpp = @(x) 6*x - sin(x);
dx = 0.5;
x0 = 10;
% create stencils on x to define discrete f
xb = x0 - (3:-1:0)'*dx;
xc = x0 + (-2:2)'*dx;
% generate discrete f
fb = fun(xb);
fc = fun(xc);
% execute finite differences
fbpp = cb*fb/dx^2
fcpp = cc*fc/dx^2
backward_difference = ((2*fun(x0)-5*fun(x0-dx)+4*fun(x0-2*dx)-fun(x0-3*dx))/dx^2)
central_difference = (-fun(x0+2*dx)+16*fun(x0+dx)-30*fun(x0)+16*fun(x0-dx)-fun(x0-2*dx))/(12*(dx^2))
fpp = funpp(x0)
3 Commenti
J. Alex Lee
il 12 Giu 2021
it is not natural to order it that way (from right node to left note). But it should still work:
fun = @(x) x.^3+sin(x);
dx = 0.5;
x0 = 10;
cb = [2,-5,4,-1];
xb = x0 - (0:3)'*dx
fb = fun(xb);
fbpp = cb*fb/dx^2 % This will not be 60.5508
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Symbolic Math Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!