Speeding up a code involving nested for loops
9 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
[EDIT: Wed Jun 1 16:10:09 UTC 2011 - Reformat - MKF]
The following is a simplified version of a code that I need to run many times. The 'rand' function is replacing calculations that are of the same order of complexity. Any intelligent way of converting the nested loops (and the multiply-sum operation)into matrix (or faster) operations would be greatly appreciated.
M=1000;
N=1000;
PSI_conv = zeros (M,N);
PSI_ab = rand(M,N);
for s = 1 : M % M = 1000
for t = 1 : N % N = 1000
PHI_sph = rand(M,N);
PSI_conv(s,t) = sum(PSI_sph(:).* conj(PSI_ab(:)));
end
end
0 Commenti
Risposte (1)
Sean de Wolski
il 1 Giu 2011
The idea is to minimize the number of computations inside the FOR-loop.
In this case, conj(PSI_ab(:)) doesn't change and thus only needs to be computed once. Why bother generating PSI_sph as an MxN matrix when you could just generate it as a vector and then not need the (:) operation?
M=1000;
N=1000;
PSI_conv = zeros (M,N);
PSI_ab = rand(M,N);
PSI_ab = conj(reshape(PSI_ab,numel(PSI_ab),1));
MN = M*N;
for s = 1 : M % M = 1000
for t = 1 : N % N = 1000
PHI_sph = rand(1,MN); %Edit per Jan's comment and my time test.
PSI_conv(s,t) = PSI_sph*PSI_ab;
end
end
8 Commenti
Sean de Wolski
il 1 Giu 2011
The 1000^4 element matrix must take some serious time to construct. I wonder if a single for-loop and 1000^3 matrix on each iteration would be faster.
Matt Fig
il 1 Giu 2011
I posted a version with BSXFUN in a single loop and it was slower, so I deleted it...
Vedere anche
Categorie
Scopri di più su Loops and Conditional Statements in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!