- tanhLayer: https://www.mathworks.com/help/releases/R2024b/deeplearning/ref/nnet.cnn.layer.tanhlayer.html
- functionLayer: https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.functionlayer.html
- Deep Learning Functions: https://www.mathworks.com/help/deeplearning/referencelist.html?type=function&listtype=cat&category=index&blocktype=all&capability=&s_tid=CRUX_lftnav
- Discussion on available activation functions: https://www.mathworks.com/matlabcentral/answers/1662520-matlab-activation-function-list
could anyone help me how I can different different activation function for training the model
4 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
As matlab provides reLu layer for performing reLu activation function please help me to know how to perform sine, cosine and tanh activation function.
0 Commenti
Risposte (1)
Soumya
il 3 Giu 2025
Modificato: Soumya
il 3 Giu 2025
The ‘functionLayer’ from MATLAB's Deep Learning Toolbox enables the implementation of activation functions such as ‘sine’ or cosine’. This function enables the definition of custom activation functions by passing a function handle that operates elementwise on the input data.
For example, a ‘sine’ activation function can be defined as follows using ‘functionLayer’:
sinActivation = functionLayer(@(X) sin(X), 'Name', 'sineActivation');
For ‘tanh’ MATLAB provides an inbuilt ‘tanhLayer’ function which can be directly used into the neural network.
The following resources provide more information on how activation functions can be implemented MATLAB:
I hope this helps!
0 Commenti
Vedere anche
Categorie
Scopri di più su Install Products in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!