How to resolve this error-Invalid training data. For image, sequence-to-label, and feature classification tasks, responses must be categorical.

25 visualizzazioni (ultimi 30 giorni)
%% Totla RGB images=55, img4training size=35x60x3x55, YL=training Labels- 55x1
load traindata1.mat;
layers = [
imageInputLayer([35 60 3])
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01, ...
'MaxEpochs',4, ...
'Shuffle','every-epoch', ...
'Verbose',false, ...
'Plots','training-progress');
YL=[ones(1,28) zeros(1,27)]';
net = trainNetwork(img4training,YL,layers,options);
Error using trainNetwork (line 184)
Invalid training data. For image, sequence-to-label, and feature classification tasks, responses must be categorical.
Error in IMP1 (line 37)
net = trainNetwork(img4training,YL,layers,options);

Risposte (1)

Sindhu Karri
Sindhu Karri il 13 Lug 2021
Hii,
In the trainNetwork function the response input(YL) should be an categorical array, instead it is defined as an array.
Refer to below documentation links for more information on categorical array,trainNetwork.
  3 Commenti

Accedi per commentare.

Categorie

Scopri di più su Descriptive Statistics and Visualization in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by