What parameters are optimized by default when the crossval-on name-value pair option is used in the fitrensemble function?
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
For eg, when the following command is used, what parameters/hyperparamters are validated by default when the crossval-on name-value pair option is used in the fitrensemble function?
rng(1);
t = templateTree('MaxNumSplits',1);
Mdl = fitrensemble(X,MPG,'Learners',t,'CrossVal','on');
0 Commenti
Risposte (1)
Aditya Patil
il 12 Lug 2021
Cross validation splits the data into K partitions. Then it trains the models on the K permutations of (K - 1) sets and validates it on the remaining 1 set. For example, if you use 10-fold validation, it will train on 9 different permutations of the sets, each having 9 sets for training, and 1 for validation.
As such, there is no dependence on the parameters of the model.
0 Commenti
Vedere anche
Categorie
Scopri di più su Regression Tree Ensembles in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!