Classifying data using machine learning
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Dhruv Birla
il 14 Lug 2021
Commentato: Dhruv Birla
il 21 Lug 2021
Using the fisheriris dataset in MATLAB, I want to use the first 30 datasets of each species for training and then predict the species of the other 20 based on the training data. I tried using the predict function, but it requires the training data vector and the prediction data vector to have the same dimensions. Is there a different function I can use that works the same way as the predict function and allows me to input vectors of varying sizes for training and prediction?
Here is the code I used:
N = size(meas,1);
newLabels = cell(90,1);
newLabels(1:30,1) = species(1:30,1);
newLabels(31:60,1) = species(51:80,1);
newLabels(61:90,1) = species(101:130,1);
trainData = cell(90,2);
trainData = str2double(trainData);
trainData(1:30,1) = meas(1:30,1);
trainData(31:60,1) = meas(51:80,1);
trainData(61:90,1) = meas(101:130,1);
trainData(1:30,2) = meas(1:30,2);
trainData(31:60,2) = meas(51:80,2);
trainData(61:90,2) = meas(101:130,2);
toPredict = cell(90,2);
toPredict = str2double(toPredict);
toPredict(1:30,1) = meas(21:50,1);
toPredict(31:60,1) = meas(71:100,1);
toPredict(61:90,1) = meas(121:150,1);
toPredict(1:30,2) = meas(21:50,2);
toPredict(31:60,2) = meas(71:100,2);
toPredict(61:90,2) = meas(121:150,2);
lda = fitcdiscr(trainData(:,1:2),newLabels);
ldaClass = predict(lda,toPredict);
ldaResubErr = resubLoss(lda);
figure
ldaResubCM = confusionchart(newLabels,ldaClass);
0 Commenti
Risposta accettata
Hrishikesh Borate
il 21 Lug 2021
Hi,
The following code uses the fisheriris dataset, where the first 30 instances of each class are used for training and the next 20 instances of each class are used for prediction.
load fisheriris.mat
N = size(meas,1);
newLabels = cell(90,1);
newLabels(1:30,1) = species(1:30,1);
newLabels(31:60,1) = species(51:80,1);
newLabels(61:90,1) = species(101:130,1);
trainData = cell(90,2);
trainData = str2double(trainData);
trainData(1:30,:) = meas(1:30,1:2);
trainData(31:60,:) = meas(51:80,1:2);
trainData(61:90,:) = meas(101:130,1:2);
toPredict = cell(60,2);
toPredict = str2double(toPredict);
toPredict(1:20,:) = meas(31:50,1:2);
toPredict(21:40,:) = meas(81:100,1:2);
toPredict(41:60,:) = meas(131:150,1:2);
toPredictLabels = cell(60,1);
toPredictLabels(1:20,1) = species(31:50,1);
toPredictLabels(21:40,1) = species(81:100,1);
toPredictLabels(41:60,1) = species(131:150,1);
lda = fitcdiscr(trainData(:,1:2),newLabels);
ldaClass = predict(lda,toPredict);
ldaResubErr = resubLoss(lda);
figure
ldaResubCM = confusionchart(toPredictLabels,ldaClass);
Più risposte (0)
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!