Solving coupled 2nd order ODEs

15 visualizzazioni (ultimi 30 giorni)
OJAS POTDAR
OJAS POTDAR il 18 Lug 2021
Commentato: OJAS POTDAR il 28 Lug 2021
Hi,
I am trying to solve coupled 2nd order ODEs. When one consider quadratic air resistance, equations of motion of a projectile take the form:
mx"=-cx'(sqrt(x'^2+y'^2))
my"=-mg-cy'(sqrt(x'^2+y'^2))
where x is horizontal distance and y is vertical distance.
Can this be done in Matlab? I understand, I can reduce one second order ODE to a series of first order ODEs, but how to address coupled part i.e. x'' depends on y' and y'' depends on x'.
Thanks
  2 Commenti
Torsten
Torsten il 18 Lug 2021
x1' = x2
x2' = -c*x2*sqrt(x2^2+x4^2)/m
x3' = x4
x4' = -g -c*x4*sqrt(x2^2+x4^2)/m
where x1 is horizontal distance, x2 is horizontal velcocity, x3 is vertical distance and x4 is vertical velocity.
Now you can use one of the ODE solvers (ODE45, ODE15S).
OJAS POTDAR
OJAS POTDAR il 28 Lug 2021
Thanks. This worked nicely:
function dydt = CatchAPass(t,y,C)
dydt = zeros(4,1);
dydt(1)= y(2);
dydt(2)= -C*y(2)*sqrt(y(2)^2+y(4)^2);
dydt(3)= y(4);
dydt(4)= -9.8-C*y(4)*sqrt(y(2)^2+y(4)^2);

Accedi per commentare.

Risposte (0)

Prodotti


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by