How can I plot some fft data in a different way?

2 visualizzazioni (ultimi 30 giorni)
Dear all,
I usual plot spectrograms plotting time vs. frequency vs. amplitude. I have collected some records through a microphone and each of the recordings are named usign a parameter, so called 'ϕ'. I would like to plot a single spectrogram similar to the one in the attached picture containing my data. File structure is 2 colums (time and amplitude) and 10000 rows.
Could you please help me making this "ϕ vs. frequency vs. amplitude" plot by using the two signal files attached?
I would sincerly appreciate it since I am litterally freaking out trying to fixing this issue.
  4 Commenti
Yazan
Yazan il 22 Lug 2021
Modificato: Yazan il 22 Lug 2021
Where are the values of ϕ? In the txt files, I can see time and amplitude. Also, what do you mean by close to each others? on the same axes (appending the first signal with the second?)? Or two subplots?
Francesco Pignatelli
Francesco Pignatelli il 22 Lug 2021
Modificato: Francesco Pignatelli il 22 Lug 2021
Values of ϕ are in the file name: 0.66 and 0.68,respectively.
When I say close to each other I mean attached/stitched. I attach an example regarding what I would like to have.

Accedi per commentare.

Risposta accettata

Yazan
Yazan il 22 Lug 2021
Modificato: Yazan il 22 Lug 2021
The first column in the txt files you provided is a DateTime vector, so again, I am not able to understand how ϕ is defined. I will assume that the seconds in the DateTime vector represent ϕ.
clc, clear, close all
% read data
opts = detectImportOptions('CH4_NO_PILOT_RE_10K_PHI_066.txt');
opts.VariableNames = {'Time', 'Amp'};
opts.DataLines = [5 inf];
ch1 = readtable('CH4_NO_PILOT_RE_10K_PHI_066.txt', opts);
ch2 = readtable('CH4_NO_PILOT_RE_10K_PHI_068.txt', opts);
% get the time instants at which the signal is sampled
ch1.Time = seconds(ch1.Time - ch1.Time(1));
ch2.Time = seconds(ch2.Time - ch2.Time(1));
% sampling period
Ts = ch1.Time(2) - ch1.Time(1);
% downsample by a factor of 5 to reduce the number of datapoints
% this part can be skipped
sig1 = resample(ch1.Amp, 1, 5);
sig2 = resample(ch2.Amp, 1, 5);
Ts = Ts*5;
% histogram computation
[sp1, f, t] = pspectrum(sig1, 1/Ts, 'spectrogram', 'OverlapPercent', 25, 'Leakage', 0.8);
sp2 = pspectrum(sig2, 1/Ts, 'spectrogram', 'OverlapPercent', 25, 'Leakage', 0.8);
% append the second histogram with the first
spTot = pow2db([sp1, sp2]); t = [t; t]; Nt = length(t)/2;
% plot
figure,
ax = axes(gcf);
imagesc(1:2*Nt, f./1000, spTot);
cb = colorbar; axis xy
% label the x-axis as phi (usually it should be time)
xlabel('\phi', 'FontSize', 15),
% label the other axes
ylabel('Frequency (KHz)', 'FontSize', 15)
cb.Label.String = 'Power (dB)';
% change the x-axis ticks
ax.XTick = Nt*(0.5:0.5:2);
ax.XTickLabel = arrayfun(@(x) num2str(x), t(ax.XTick), 'UniformOutput', false);
% vertical line to separate the two histograms
xline(Nt, 'LineWidth', 3, 'LineStyle', '--', 'Color', 'r')
% annotate the figure
annotation('textbox', 'Position', [0.18,0.8,0.22,0.1], 'String', 'Histogram 1',...
'FontSize', 15)
annotation('textbox', 'Position', [0.5,0.8,0.22,0.1], 'String', 'Histogram 2',...
'FontSize', 15)
  3 Commenti
Yazan
Yazan il 22 Lug 2021
Use the following
% change the x-axis ticks
ax.XTick = Nt*([0.5 1.5]);
ax.XTickLabel = [{'\phi = 0.66'}, {'\phi = 0.68'}];
Francesco Pignatelli
Francesco Pignatelli il 22 Lug 2021
Now it is perfect! Thank you very much for your help Yazan, I really appreciate it :)
I hope to "meet" you again in this MATLAB comunity. Bye :)

Accedi per commentare.

Più risposte (1)

Chunru
Chunru il 22 Lug 2021
% Assume there are 3 spec (corresponding to phi)
nf = 20; nt=15; nspec = 3;
sp = randn(nf, nt, nspec);
% reshape the spectrogram to 2D
sp = reshape(sp, [nf, nt*nspec]);
% multiple spectrograms
imagesc(sp);
% annotation
h = gca;
h.XTick = 0.5+(0:nspec-1)*nt;
h.YTick = [];
grid on
phi = [1.2 3.4 5.6];
h.XTickLabel = string(phi);
xlabel('\phi')
  1 Commento
Francesco Pignatelli
Francesco Pignatelli il 22 Lug 2021
Hello Chunru, thank you very much for your efforts, I really appreciate it :)

Accedi per commentare.

Categorie

Scopri di più su Measurements and Feature Extraction in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by