fsolve stopped because the problem appears regular
7 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Dear all,
I tried to solve an equation as below, but "fsolve" failed.
since ω and data are known, only two variables x(1) and x(2) are required to be solved. However, the error message is shown as "fsolve stopped because the problem appears regular". How to resovle this issue?
clear all;
omega0=2*pi*599.585e12;
data=(2+0.5i)^2;
options=optimoptions('fsolve','Display','iter');
x=fsolve(@(x)rfpnk(x,omega0,data),[2*omega0,2*omega0],options);
function F=rfpnk(x,omega0,data)
F(1)=1-x(1)*x(2)/(omega0^2+x(1)^2)-real(data);
F(2)=omega0*x(2)/(omega0^2+x(1)^2)+imag(data);
end
2 Commenti
Yuanhao Zhu
il 30 Lug 2021
It is likely that your optimization starting point was not chosen properly. The optimization process is guided by gradient estimation. Thus, a more reasonable starting point may solve the issue. Try a random starting point if you have no idea about what the solution would be. Or if you have a legitimate guess for your solution, you can start with a number that is close to the real solution .
Risposta accettata
Walter Roberson
il 30 Lug 2021
Modificato: Walter Roberson
il 30 Lug 2021
format long g
omega0=2*pi*599.585e12;
data=(2+0.5i)^2;
syms x [1 2]
rf = rfpnk(x,omega0,data)
sol = solve(rf)
[sol.x1, sol.x2]
soln = double(ans)
solv = vpasolve(rf, [-1000*omega0; 1000*omega0])
[solv.x1, solv.x2]
double(subs(rf, sol))
double(subs(rf, solv))
options=optimoptions('fsolve','Display','iter');
x = fsolve(@(x)rfpnk(x,omega0,data), soln, options)
xagain = fsolve(@(x)rfpnk(x,omega0,data), [5.18e15 -2.17e16], options)
But initial values 5.1e+15 -2.1e+16 were not good enough for fsolve() to find something it liked. And notice that even though with the 3 digits of precision of the input solution, that fsolve's f(x) is not great compared to what it is when using the full precision found by solve(): if you were to tighten the tolerances you might need more input digits.
To clarify: I use solve() and vpasolve() here to show that there are solutions and to give us an idea of where they are so that we can explore what is needed in order to get fsolve() to work. solve() and vpasolve() are not intended to be part of the permanent solution (though if you have access to the Symbolic Toolbox, then solve() finds the exact solution easily)
It turns out that you need to be somewhat precise in order for fsolve() to be able to say it is happy, indicating that the equations are numerically sensitive.
function F=rfpnk(x,omega0,data)
F(1)=1-x(1)*x(2)/(omega0^2+x(1)^2)-real(data);
F(2)=omega0*x(2)/(omega0^2+x(1)^2)+imag(data);
end
Più risposte (1)
Matt J
il 31 Lug 2021
Modificato: Matt J
il 31 Lug 2021
If you are going to solve for x(i) that are expected to be on the order of 1e15, you need to adjust all of fsolve's tolerance parameters (StepTolerance, FunctionTolerance, OptimalityTolerance, etc...) to reflect that. The default tolerance values expect x and f(x) to be of a much lower order of magnitude.
An easier way to fix it is to change the units of x:
clear all;
omega0=2*pi*599.585e12;
data=(2+0.5i)^2;
options=optimoptions('fsolve','Display','iter');
x=fsolve(@(x)rfpnk(1e12*x,omega0,data),[2,2],options)*1e12;
function F=rfpnk(x,omega0,data)
F(1)=1-x(1)*x(2)/(omega0^2+x(1)^2)-real(data);
F(2)=omega0*x(2)/(omega0^2+x(1)^2)+imag(data);
end
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!