I need to fix the code by using for loop to plot the relative error E in 2 norm versus n.

2 visualizzazioni (ultimi 30 giorni)
%%%% Taylor ploynomials pn(x)
x=2:0.01:3;
f = 1./x;
p1=1/2.5;
p2= 1/2.5 -(4/25)*(x-2.5);
p3= 1/2.5 -(4/25)*(x-2.5) + (8/125)*(x-2.5).^2;
p4= 1/2.5 -(4/25)*(x-2.5) + (8/125)*(x-2.5).^2 -(16/625)*(x-2.5).^3;
E1=sqrt((f-p1).^2)/sqrt((f).^2)
E2=sqrt((f-p2).^2)/sqrt((f).^2)
E3=sqrt((f-p3).^2)/sqrt((f).^2)
E4=sqrt((f-p4).^2)/sqrt((f).^2)
n=[1 2 3 4]
E=[ E1 E2 E3 E4];
semilogy(n,E)

Risposte (1)

Sivani Pentapati
Sivani Pentapati il 2 Set 2021
Please refer to the below code snippet to calculate the l2 norm of error in iterative way. For more information, please refer to for loop in MATLAB documentation.
p(1,:)=1/2.5;
for i=2:4
p(i,:)= p(i-1,:)+ (4/25)*(2/5).^(i-2)*(-1).^(i-1)*(x-2.5).^(i-1);
end
E=sqrt((f-p).^2)/sqrt((f).^2);
n=1:4;
semilogy(n,E);

Categorie

Scopri di più su Loops and Conditional Statements in Help Center e File Exchange

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by