Properly normalize a pdf histogram

30 visualizzazioni (ultimi 30 giorni)
Christoph
Christoph il 13 Ott 2013
Commentato: Christoph il 14 Ott 2013
Dear Matlab experts!
I am currently a bit confused about how to normalize a probability distribution histogram properly to its area (so that the sum over all bin-areas would be one).
I am creating random numbers following a logistic pdf accordingly to x_logistic=ln(p/(1-p)) where p is a random number.
Then I use histc and an edge vector to create my histogram data, normalize it by dividing it by the area. However the deviation between histogram and pdf is quite significant. Maybe someone can comment on the script? (I expect the histogram getting closer to the actual pdf for high sample numbers and small bins...?)
Thank you in advance!
All the best, Chris
clear all, close all;
maxiter=10^5;
x_limit=15;
x_res=0.01;
X=log((rand(maxiter,1)./(1-rand(maxiter,1))));
x=[-x_limit:x_res:x_limit];
[N, BIN]=histc(X, x);
Nnorm=N./trapz(x,N);
subplot(2,1,1)
h=bar(x,Nnorm, 'hist'), hold on
plot(x, exp(-x)./(1+exp(-x)).^2,'r--')
title('PDF for logistic distribution')
hold off
A1=trapz(x, exp(-x)./(1+exp(-x)).^2)
A2=trapz(x,Nnorm)
subplot(2,1,2)
bar(x, cumsum(Nnorm*x_res)), hold on
plot(x,exp(x)./(1+exp(x)),'r--')
title('Cumulative PDF for logistic distribution')

Risposta accettata

Jonathan LeSage
Jonathan LeSage il 14 Ott 2013
Modificato: Jonathan LeSage il 14 Ott 2013
Your code looks good, and you've definitely normalized the histogram correctly. However, you've got one thing that needs fixing. The random values, p, in your probability density function should be the same random values. You have generated them independently, but p only need to be randomly generated once. I've made a simple fix to your code and commented on the lines!
maxiter = 10^5;
x_limit = 15;
x_res = 0.01;
% Generate vector of uniform random numbers
randVec = rand(maxiter,1);
% f(p) = ln(p/(1-p)) => PDF random values utilize same p vector
X = log(randVec./(1-randVec));
x = -x_limit:x_res:x_limit;
[N, BIN] = histc(X, x);
Nnorm = N./trapz(x,N);
subplot(2,1,1)
h = bar(x,Nnorm, 'hist'); hold on;
plot(x, exp(-x)./(1+exp(-x)).^2,'r--')
title('PDF for logistic distribution')
hold off
A1 = trapz(x, exp(-x)./(1+exp(-x)).^2);
A2 = trapz(x,Nnorm);
subplot(2,1,2)
bar(x, cumsum(Nnorm*x_res)), hold on
plot(x,exp(x)./(1+exp(x)),'r--')
title('Cumulative PDF for logistic distribution')
  1 Commento
Christoph
Christoph il 14 Ott 2013
Dear Jonathan!
Thank you for your explanation and help!
I think this is the perfect solution now!
Best, Chris

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Data Distribution Plots in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by