USE fft(x) as a highpass filter
26 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
fcarl
il 16 Giu 2011
Commentato: Travis Morrison
il 26 Giu 2017
Hi,
I want to use the fft(x) function to create an highpass filter. I want to ask if the following procedure is correct:
1) take the signal x and make an fft(x).
2) Set frequencies up to 0.5 Hz to zero.
3) Make ifft(spectrum).
Is it right to set the first data points to zero or is there anything to pay attention to (e.g.: symmetry of the fft...). So if I set the first data points to zero, is this enough?
Thanks for your efforts!
0 Commenti
Risposta accettata
Rick Rosson
il 21 Giu 2011
Here are some suggestions for improving the code.
I have inserted several new lines of code indented from the original code, and eliminated some lines of the original code by making them into comments:
signal=load(files{i});
dt = 0.008;
Fs = 1/dt;
N = size(signal,1);
dF = Fs/N;
f = (-Fs/2:dF:Fs/2-dF)';
% Band-Pass Filter:
BPF = ((lower_freq < abs(f)) & (abs(f) < upper_freq));
figure;
plot(f,BPF);
% time=0.008:0.008:size(signal,1)*0.008;
time = dt*(0:N-1)';
figure;
plot(time,signal);
% NFFT=2^nextpow2(size(signal,1));
signal=signal-mean(signal);
% spektrum = fft(signal,NFFT)/(size(signal,1));
spektrum = fftshift(fft(signal))/N;
figure;
subplot(2,1,1);
plot(f,abs(spektrum));
% spektrum(lower_freq:upper_freq,1)=0;
% spektrum(size(spektrum,1)- upper_freq+1:size(spektrum,1)-lower_freq+1,1)=0;
spektrum = BPF.*spektrum;
subplot(2,1,2);
plot(f,abs(spektrum));
% signal=ifft(spektrum); %inverse ifft
signal=ifft(ifftshift(spektrum)); %inverse ifft
HTH.
Rick
4 Commenti
Travis Morrison
il 26 Giu 2017
When converting back to real space you have to multiply by N. Other than that, thanks for the help!
Più risposte (5)
Rick Rosson
il 4 Ago 2011
You are welcome. If you don't mind, could you please "Accept" the answer that helped resolve this issue?
Thanks!
Rick
0 Commenti
Rick Rosson
il 16 Giu 2011
Before you can solve this problem, you need to know the sampling rate (in samples per second) of the signal x. Otherwise, you will not be able to figure out how many samples of the spectrum correspond to 0.5 hertz (the cut-off frequency).
For convenience, you may want to create the variable Fs to represent the sampling rate and Fc to repreesent the cut-off frequency. For example:
Fs = 200; % samples per second
Fc = 0.5; % hertz
Also, the spectrum returned by the fft function is double-sided. By default, it corresponds to the frequencies from 0 hertz up to Fs hertz. It will be easier to implement your filter if you swap the two halves of the spectrum, so that it will correspond to -Fs/2 up to +Fs/2. You can do so using the fftshift function:
X = fftshift(fft(x));
HTH.
Rick
0 Commenti
Vedere anche
Categorie
Scopri di più su Spectral Measurements in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!