Unconstrained Optimization using the Extended Kalman Filter
The Kalman filter is actually a feedback approach to minimize the estimation error in terms of sum of square. This approach can be applied to general nonlinear optimization. This function shows a way using the extended Kalman filter to solve some unconstrained nonlinear optimization problems. Two examples are included: a general optimization problem and a problem to solve a set of nonlinear equations represented by a neural network model.
This function needs the extended Kalman filter function, which can be download from the following link:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18189&objectType=FILE
Cita come
Yi Cao (2025). Unconstrained Optimization using the Extended Kalman Filter (https://www.mathworks.com/matlabcentral/fileexchange/18286-unconstrained-optimization-using-the-extended-kalman-filter), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- Signal Processing > Signal Processing Toolbox > Digital and Analog Filters > Digital Filter Design > Adaptive Filters >
Tag
Riconoscimenti
Ispirato da: Learning the Extended Kalman Filter
Ispirato: Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0.0 | update description |