## Impulse response invariant discretization of fractional order integrators/differe​ntiators

Versione 1.0.0.0 (1,55 KB) da
compute a discrete-time finite dimensional (z) transfer function to approximate s^r, r is real numbe
Aggiornato 5 set 2008

Nessuna licenza

% Impulse response invariant discretization of fractional order
% integrators/differentiators
%
% irid_fod function is prepared to compute a discrete-time finite dimensional
% (z) transfer function to approximate a continuous irrational transfer
% function s^r, where "s" is the Laplace transform variable, and "r" is a
% real number in the range of (-1,1). s^r is called a fractional order
% differentiator if 0 < r < 1 and a fractional order integrator if -1 < r < 0.
%
% The proposed approximation keeps the impulse response "invariant"
%
% IN:
% r: the fractional order
% Ts: the sampling period
% norder: the finite order of the approximate z-transfer function
% (the orders of denominator and numerator z-polynomial are the same)
% OUT:
% sr: returns the LTI object that approximates the s^r in the sense
% of impulse response.
% TEST CODE
% dfod=irid_fod(-.5,.01,5);figure;pzmap(dfod)
%
% Reference: YangQuan Chen. "Impulse-invariant and step-invariant
% discretization of fractional order integrators and differentiators".
% August 2008. CSOIS AFC (Applied Fractional Calculus) Seminar.

### Cita come

YangQuan Chen (2024). Impulse response invariant discretization of fractional order integrators/differentiators (https://www.mathworks.com/matlabcentral/fileexchange/21342-impulse-response-invariant-discretization-of-fractional-order-integrators-differentiators), MATLAB Central File Exchange. Recuperato .

##### Compatibilità della release di MATLAB
Creato con R2007a
Compatibile con qualsiasi release
##### Compatibilità della piattaforma
Windows macOS Linux
##### Categorie
Scopri di più su Dynamic System Models in Help Center e MATLAB Answers

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0