Multiclass SVM classifier
The provided MATLAB functions can be used to train and perform multiclass classification on a data set using a dendrogram-based support vector machine (D-SVM).
The two main functions are:
Train_DSVM: This is the function to be used for training
Classify_DSVM: This is the function to be used for D-SVM classification
Example: Training and classification using fisheriris data
load fisheriris
train_label={zeros(30,1),ones(30,1),2*ones(30,1)};
train_cell={meas(1:30,:),meas(51:80,:),meas(101:130,:)};
[svmstruct] = Train_DSVM(train_cell,train_label);
label=[0 1 2];
test_mat=[meas(31:40,:);meas(81:90,:);meas(131:140,:)];
[Class_test] = Classify_DSVM(test_mat,label,svmstruct);
labels=[zeros(1,10),ones(1,10),2*ones(1,10)];
[Cmat,DA]= confusion_matrix(Class_test,labels,{'A','B','C'});
Cita come
Tarek Lajnef (2025). Multiclass SVM classifier (https://it.mathworks.com/matlabcentral/fileexchange/48632-multiclass-svm-classifier), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
DSVM/
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.7.0.0 | adding level variable; variable defined in train_dsvm function and used in classify_dsvm |
||
| 1.6.0.0 | fiing some bugs |
||
| 1.5.0.0 | Add confusion_matrix, |
||
| 1.4.0.0 | Title + Tags |
||
| 1.3.0.0 | Tag |
||
| 1.2.0.0 | Title |
||
| 1.1.0.0 | toolbox |
||
| 1.0.0.0 |
|
