Outlier detection is crucial in building a highly predictive model. In this study, we proposed an enhanced Monte-Carlo outlier detection (EMCOD) method by establishing cross-prediction models based on determinate normal samples and analyzing the distribution of prediction errors individually for dubious samples.
Cita come
Liangxiao Zhang (2025). EMCOD (https://it.mathworks.com/matlabcentral/fileexchange/52023-emcod), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Creato con
R2011a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS LinuxCategorie
Scopri di più su Statistics and Machine Learning Toolbox in Help Center e MATLAB Answers
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
emcod/
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0 | 2015-07-08 in Canada
0 |
|
