YAN-PRTools

Versione 1.0.0.0 (4,59 MB) da Ke Yan
Implementation and wrappers of ~40 common pattern recognition algorithms.
1,9K download
Aggiornato 26 apr 2016

Yet ANother pattern recognition toolbox.
>>Feature processing
zscore
PCA, KPCA
LDA

>>Classification
Logistic regression (LR), softmax
support vector machine (SVM)
random forest (RF)
K nearest neighbors (KNN)
Bayes, Mahalanobis distance
AdaBoost
tree
artificial neural networks (ANN)
extreme learning machine (ELM)

>>Regression
(Kernel) ridge regression
support vector regression (SVR)
least squares, robust fitting, quadratic fitting
lasso
partial least squares (PLS)
step-wise fit
random forest (RF)
artificial neural networks (ANN)
ELM

>>Feature selection
Correlation coefficients, Fisher ratio
minimum redundancy maximal relevance (mRMR)
single feature predictor
sequential forward selection (SFS)
genetic algorithm (GA)
random forest (RF)
step-wise fit
AdaBoost
SVM-RFE (original linear and kernel version)

>>Representative sample selection (active learning)
Cluster centers
transductive experimental design (TED)
locally linear reconstruction (LLR)
Kennard-Stone algorithm (KS)

* Unified and simple interface;
* Convenient to observe and change algorithm parameters
* Extensible. Simple file structures makes it easier to modify the algorithms.

***Interfaces***

>>Feature processing
[Xnew, model] = ftProc_xxx_tr(X,Y,param) % training
Xnew = ftProc_xxx_te(model,X) % test

>>Classification
model = classf_xxx_tr(X,Y,param) % training
[pred,prob] = classf_xxx_te(model,Xtest) % test, return the predicted labels and probabilities (optional)

>>Regression
model = regress_xxx_tr(X,Y,param) % training
rv = regress_xxx_te(model,Xtest) % test, return the predicted values

>>Feature selection
[ftRank,ftScore] = ftSel_xxx(ft,target,param) % return the feature rank (or subset) and scores (optional)

>>Representative sample selection (active learning)
smpList = smpSel_xxx(X,nSel,param) % return the indices of the selected samples

Please see test.m for sample usages.

Besides, there are three uniform wrappers: ftProc_, classf_, regress_. They accept algorithm name strings as inputs and combine the training and test phase.

Please find more details at http://yanke23.com/articles/research/2016/04/17/Yet-ANother-pattern-recognition-matlab-toolbox.html
or https://github.com/viggin/yan-prtools

Cita come

Ke Yan (2026). YAN-PRTools (https://github.com/viggin/yan-prtools), GitHub. Recuperato .

Compatibilità della release di MATLAB
Creato con R2011a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

RandomForest-v0.02/RF_Class_C

RandomForest-v0.02/RF_Reg_C

actvTED_demo

libsvm-3.13/matlab

mRMR

mRMR/mi

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.0.0.0

revise intro
revise intro
update description
revise description

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.