Deep Learning Tutorial Series

Download code and watch video series to learn and implement deep learning techniques
19K download
Aggiornato 5 dic 2017

Visualizza la licenza

Nota dell'editore: This file was selected as MATLAB Central Pick of the Week

The code provides hands-on examples to implement convolutional neural networks (CNNs) for object recognition. The three demos have associated instructional videos that will allow for a complete tutorial experience to understand and implement deep learning techniques.
The demos include:
- Training a neural network from scratch
- Using a pre-trained model (transfer learning)
- Using a neural network as a feature extractor
The corresponding videos for the demos are located here: https://www.mathworks.com/videos/series/deep-learning-with-MATLAB.html
The use of a GPU and Parallel Computing Toolbox™ is recommended when running the examples. Demo 3 requires Statistics and Machine Learning Toolbox™ in addition to the required products below.

Cita come

MathWorks Deep Learning Toolbox Team (2024). Deep Learning Tutorial Series (https://www.mathworks.com/matlabcentral/fileexchange/62990-deep-learning-tutorial-series), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2017a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Recognition, Object Detection, and Semantic Segmentation in Help Center e MATLAB Answers
Riconoscimenti

Ispirato: TFCNN-BiGRU, Training 3D CNN models

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.1.0.0

minor bug fix in third file, "Demo_FeatureExtraction.mlx" :
on line 1 & 2, variable 'net' changed to 'convnet'

1.0.0.0

+ Fixed typo in code.