11 Classical Time Series Forecasting Methods in MATLAB

In this article, it listed some classical time series techniques available in MATLAB, you may try them on your forecasting problem.
2,5K download
Aggiornato 11 feb 2020

The blooming of machine learning implementation, it has raised interest from different industries to adopt it for classification and forecasting on time series problem.

Before exploring machine learning methods for time series, it is good idea to ensure you have tried classical and statistical time series forecasting methods, those methods are still performing well on a wide range of problems, provided the data is suitably prepared and the method is well configured.
In this article, it listed some classical time series techniques available in MATLAB, you may try them on your forecasting problem prior to exploring to machine learning methods.
It give you hints on each method to get started with a working code example and where to look to get more information on the method.

Overview:
This article demostrates 11 different classical time series forecasting methods, they are
1) Autoregression (AR)
2) Moving Average
3) Autoregressive Moving Average
4) Autoregressive Integrated Moving Average (ARIMA)
5) Seasonal Autoregressive Integrated Moving-Average (SARIMA)
6) Seasonal Autoregressive Integrated Moving Average with Exogenous Regressors (SARIMAX)
8) Regression Model with ARIMA Error
9) Vector Autoregression (VAR)
10) GARCH Model
11) Glostan, Jagannathan and Runkle GARCH Model

My other revelevant articles:
1) VAR Model To Predict Malaysia/U.S. Foreign Exchange Rate
https://www.mathworks.com/matlabcentral/fileexchange/71767-var-model-to-predict-malaysia-u-s-foreign-exchange-rate
2) Stock Prediction Using ARIMA
https://www.mathworks.com/matlabcentral/fileexchange/68576-stock-prediction-using-arima
3) GDP Prediction Using ARIMA and NAR Neural Network
https://www.mathworks.com/matlabcentral/fileexchange/68389-gdp-prediction-using-arima-and-nar-neural-network

Cita come

Kevin Chng (2024). 11 Classical Time Series Forecasting Methods in MATLAB (https://github.com/KevinChngJY/timeseriesinmatlab), GitHub. Recuperato .

Compatibilità della release di MATLAB
Creato con R2019b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Conditional Mean Models in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.0.1

Change description

1.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.