Dense disparity map with kmeans and median filter
median filter and k-means for dense disparity map estimation MATLAB functions to fill a sparse disparity map, in consequence, creating a dense disparity map. DEMO.m contains three examples with Tsukuba, Middlebury, and KITTI stereo datasets.
As input, the sparse disparity map must have NaN labels for occluded values, the reference RGB image and a minimum window size to perform the filtering. First the RGB reference image is color segmented from CIELab colorspace' 'a' and 'b' channels, then the median filtering stage is performed iteratively, beginning with a minimum window size, and then increasing its dimensions until there isn't NaN values or there isn't a value change between iterations
MEX functions were done with Armadillo linear algebra library, libgomp.dll is required to perform parallel processing
Conrad Sanderson and Ryan Curtin. Armadillo: a template-based C++ library for linear algebra. Journal of Open Source Software, Vol. 1, pp. 26, 2016.
Cita come
Victor Gonzalez (2024). Dense disparity map with kmeans and median filter (https://github.com/alx3416/Dense-disparity-map-with-kmeans-and-median-filter), GitHub. Recuperato .
Gonzalez-Huitron, Victor, et al. “Parallel Framework for Dense Disparity Map Estimation Using Hamming Distance.” Signal, Image and Video Processing, vol. 12, no. 2, Springer Science and Business Media LLC, Aug. 2017, pp. 231–38, doi:10.1007/s11760-017-1150-3.
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxTag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate
Versione | Pubblicato | Note della release | |
---|---|---|---|
1.0.0 |
|