Dense disparity map with kmeans and median filter

median filter and k-means clustering for dense disparity map estimation
106 download
Aggiornato 25 mag 2020

median filter and k-means for dense disparity map estimation MATLAB functions to fill a sparse disparity map, in consequence, creating a dense disparity map. DEMO.m contains three examples with Tsukuba, Middlebury, and KITTI stereo datasets.

As input, the sparse disparity map must have NaN labels for occluded values, the reference RGB image and a minimum window size to perform the filtering. First the RGB reference image is color segmented from CIELab colorspace' 'a' and 'b' channels, then the median filtering stage is performed iteratively, beginning with a minimum window size, and then increasing its dimensions until there isn't NaN values or there isn't a value change between iterations

MEX functions were done with Armadillo linear algebra library, libgomp.dll is required to perform parallel processing

Conrad Sanderson and Ryan Curtin. Armadillo: a template-based C++ library for linear algebra. Journal of Open Source Software, Vol. 1, pp. 26, 2016.

Cita come

Victor Gonzalez (2024). Dense disparity map with kmeans and median filter (https://github.com/alx3416/Dense-disparity-map-with-kmeans-and-median-filter), GitHub. Recuperato .

Gonzalez-Huitron, Victor, et al. “Parallel Framework for Dense Disparity Map Estimation Using Hamming Distance.” Signal, Image and Video Processing, vol. 12, no. 2, Springer Science and Business Media LLC, Aug. 2017, pp. 231–38, doi:10.1007/s11760-017-1150-3.

Visualizza più stili
Compatibilità della release di MATLAB
Creato con R2019b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.