From the series: Machine Learning Applications in Risk Management
Kawee Numpacharoen, MathWorks
Credit card fraud may be one of the most common fraudulent activities in many countries. However, the number of fraudulent activities is very small (less than 1%). Common performance metrics, such as accuracy, may not be that useful for determining model performance. In this demo, you will learn how to use machine learning to detect fraudulent activities as well as how to use built-in functions in MATLAB® to calculate the area under the precision-recall curve (AUPRC), a custom performance metric.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
Select web siteYou can also select a web site from the following list:
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
This website uses cookies to improve your user experience, personalize content and ads, and analyze website traffic. By continuing to use this website, you consent to our use of cookies. Please see our Privacy Policy to learn more about cookies and how to change your settings.