Main Content

Detect Objects Using YOLOv4-tiny Network Deployed to FPGA

Since R2024a

This example shows how to deploy a trained you only look once (YOLO) v4-tiny object detector to a target FPGA board.

For this example, you need:

  • Deep Learning Toolbox™

  • Computer Vision Toolbox™

  • Deep Learning HDL Toolbox™

  • Deep Learning HDL Toolbox Support Package for Xilinx® FPGA and SoC Devices

  • Computer Vision Toolbox Model for YOLO v4 Object Detection

  • Deep Learning Toolbox™ Model Quantization Library

  • MATLAB® Coder™ Interface for Deep Learning

Create YOLOv4-tiny Detector Object

In this example, you use a pretrained YOLOv4 object detector. First, download the Computer Vision Toolbox Model for YOLOv4 Object Detection. Then view the network:

name = "tiny-yolov4-coco";
vehicleDetector = yolov4ObjectDetector(name);
net = vehicleDetector.Network
net = 
  dlnetwork with properties:

         Layers: [74×1 nnet.cnn.layer.Layer]
    Connections: [80×2 table]
     Learnables: [80×3 table]
          State: [38×3 table]
     InputNames: {'input_1'}
    OutputNames: {'conv_31'  'conv_38'}
    Initialized: 1

  View summary with summary.

The network contains a resize2dLayer layer with a bilinear interpolation method. Deep Learning HDL Toolbox does not support the bilinear interpolation method. Change the interpolation method to nearest by creating a resize2dLayer layer with default properties and replace the existing resize2dLayer layer with a new layer.

layer_resize = resize2dLayer('Scale', 2);
net = replaceLayer(net, 'up2d_35_new', layer_resize);

The existing network contains functionLayer layers to perform the actions of a slice layer. Deep Learning HDL Toolbox does not support the functionLayer layer. Replace these layers with the dlhdl.layer.sliceLayer.

x0 = dlhdl.layer.sliceLayer(Name = 'slice_5',Groups = 2,GroupId = 2);
x1 = dlhdl.layer.sliceLayer(Name = 'slice_13',Groups = 2,GroupId = 2);
x2 = dlhdl.layer.sliceLayer(Name = 'slice_21',Groups = 2,GroupId = 2);
net = replaceLayer(net,'slice_5',x0);
net = replaceLayer(net,'slice_13',x1);
net = replaceLayer(net,'slice_21',x2);
net = net.initialize;

unzip vehicleDatasetImages.zip

Perform a test detection by using random images from the data set.

numImagesToProcess = 3;
imageNames = dir(fullfile(pwd,'vehicleImages','*.jpg'));
imageNames = {imageNames.name}';
rng(0);
imageIndices = randi(length(imageNames),1,numImagesToProcess);
for idx = 1:numImagesToProcess
    testImage = imread(fullfile(pwd,'vehicleImages',imageNames{imageIndices(idx)}));
    % Pre-process the input 
    img = imresize(testImage,[416,416]);
    % Detect YOLOv4 vehicle
    [bboxes,scores,labels] = detect(vehicleDetector, img);
    pause(0.5)
end
I_ann = insertObjectAnnotation(img,'rectangle',bboxes,scores);
h = figure('Name', 'YOLOv4-Tiny-Coco');
imshow(I_ann)

Figure YOLOv4-Tiny-Coco contains an axes object. The axes object contains an object of type image.

Deploy Single-Precision Network to FPGA

Define the target FPGA board programming interface by using the dlhdl.Target object. Specify that the interface is for a Xilinx board with an Ethernet interface.

hTarget = dlhdl.Target('Xilinx', 'Interface', 'Ethernet');

Prepare the network for deployment by creating a dlhdl.Workflow object. Specify the network and bitstream name. Ensure that the bitstream name matches the data type and the FPGA board. In this example, the target FPGA board is the Xilinx Zynq® UltraScale+™ MPSoC ZCU102 board. The bitstream uses single data type.

hW = dlhdl.Workflow("Network",net,"Bitstream",'zcu102_single',"Target",hTarget);

To compile the network and generate the instructions, weights, and biases for deployment, run the compile method of the dlhdl.Workflow object.

dn = compile(hW)
### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_single.
### An output layer called 'Output1_conv_31' of type 'nnet.cnn.layer.RegressionOutputLayer' has been added to the provided network. This layer performs no operation during prediction and thus does not affect the output of the network.
### An output layer called 'Output2_conv_38' of type 'nnet.cnn.layer.RegressionOutputLayer' has been added to the provided network. This layer performs no operation during prediction and thus does not affect the output of the network.
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### The network includes the following layers:
     1   'input_1'           Image Input              416×416×3 images                                                    (SW Layer)
     2   'conv_2'            2-D Convolution          32 3×3×3 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
     3   'leaky_2'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
     4   'conv_3'            2-D Convolution          64 3×3×32 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
     5   'leaky_3'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
     6   'conv_4'            2-D Convolution          64 3×3×64 convolutions with stride [1  1] and padding 'same'        (HW Layer)
     7   'leaky_4'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
     8   'slice_5'           dlhdl.layer.sliceLayer   dlhdl.layer.sliceLayer                                              (HW Layer)
     9   'conv_6'            2-D Convolution          32 3×3×32 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    10   'leaky_6'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    11   'conv_7'            2-D Convolution          32 3×3×32 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    12   'leaky_7'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    13   'concat_8'          Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    14   'conv_9'            2-D Convolution          64 1×1×64 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    15   'leaky_9'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    16   'concat_10'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    17   'maxPool_11'        2-D Max Pooling          2×2 max pooling with stride [2  2] and padding 'same'               (HW Layer)
    18   'conv_12'           2-D Convolution          128 3×3×128 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    19   'leaky_12'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    20   'slice_13'          dlhdl.layer.sliceLayer   dlhdl.layer.sliceLayer                                              (HW Layer)
    21   'conv_14'           2-D Convolution          64 3×3×64 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    22   'leaky_14'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    23   'conv_15'           2-D Convolution          64 3×3×64 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    24   'leaky_15'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    25   'concat_16'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    26   'conv_17'           2-D Convolution          128 1×1×128 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    27   'leaky_17'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    28   'concat_18'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    29   'maxPool_19'        2-D Max Pooling          2×2 max pooling with stride [2  2] and padding 'same'               (HW Layer)
    30   'conv_20'           2-D Convolution          256 3×3×256 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    31   'leaky_20'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    32   'slice_21'          dlhdl.layer.sliceLayer   dlhdl.layer.sliceLayer                                              (HW Layer)
    33   'conv_22'           2-D Convolution          128 3×3×128 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    34   'leaky_22'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    35   'conv_23'           2-D Convolution          128 3×3×128 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    36   'leaky_23'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    37   'concat_24'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    38   'conv_25'           2-D Convolution          256 1×1×256 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    39   'leaky_25'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    40   'concat_26'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    41   'maxPool_27'        2-D Max Pooling          2×2 max pooling with stride [2  2] and padding 'same'               (HW Layer)
    42   'conv_28'           2-D Convolution          512 3×3×512 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    43   'leaky_28'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    44   'conv_29'           2-D Convolution          256 1×1×512 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    45   'leaky_29'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    46   'conv_30'           2-D Convolution          512 3×3×256 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    47   'leaky_30'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    48   'conv_31'           2-D Convolution          255 1×1×512 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    49   'conv_34'           2-D Convolution          128 1×1×256 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    50   'leaky_34'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    51   'layer'             Resize                   Resize 2d layer with scale of [2 2].                                (HW Layer)
    52   'concat_36'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    53   'conv_37'           2-D Convolution          256 3×3×384 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    54   'leaky_37'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    55   'conv_38'           2-D Convolution          255 1×1×256 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    56   'Output1_conv_31'   Regression Output        mean-squared-error                                                  (SW Layer)
    57   'Output2_conv_38'   Regression Output        mean-squared-error                                                  (SW Layer)
                                                                                                                        
### Notice: The layer 'input_1' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'Output1_conv_31' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
### Notice: The layer 'Output2_conv_38' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
### Compiling layer group: conv_2>>leaky_4 ...
### Compiling layer group: conv_2>>leaky_4 ... complete.
### Compiling layer group: conv_6>>leaky_6 ...
### Compiling layer group: conv_6>>leaky_6 ... complete.
### Compiling layer group: conv_7>>leaky_7 ...
### Compiling layer group: conv_7>>leaky_7 ... complete.
### Compiling layer group: conv_9>>leaky_9 ...
### Compiling layer group: conv_9>>leaky_9 ... complete.
### Compiling layer group: maxPool_11>>leaky_12 ...
### Compiling layer group: maxPool_11>>leaky_12 ... complete.
### Compiling layer group: conv_14>>leaky_14 ...
### Compiling layer group: conv_14>>leaky_14 ... complete.
### Compiling layer group: conv_15>>leaky_15 ...
### Compiling layer group: conv_15>>leaky_15 ... complete.
### Compiling layer group: conv_17>>leaky_17 ...
### Compiling layer group: conv_17>>leaky_17 ... complete.
### Compiling layer group: maxPool_19>>leaky_20 ...
### Compiling layer group: maxPool_19>>leaky_20 ... complete.
### Compiling layer group: conv_22>>leaky_22 ...
### Compiling layer group: conv_22>>leaky_22 ... complete.
### Compiling layer group: conv_23>>leaky_23 ...
### Compiling layer group: conv_23>>leaky_23 ... complete.
### Compiling layer group: conv_25>>leaky_25 ...
### Compiling layer group: conv_25>>leaky_25 ... complete.
### Compiling layer group: maxPool_27>>leaky_29 ...
### Compiling layer group: maxPool_27>>leaky_29 ... complete.
### Compiling layer group: conv_30>>conv_31 ...
### Compiling layer group: conv_30>>conv_31 ... complete.
### Compiling layer group: conv_34>>leaky_34 ...
### Compiling layer group: conv_34>>leaky_34 ... complete.
### Compiling layer group: conv_37>>conv_38 ...
### Compiling layer group: conv_37>>conv_38 ... complete.

### Allocating external memory buffers:

          offset_name          offset_address     allocated_space 
    _______________________    ______________    _________________

    "InputDataOffset"           "0x00000000"     "79.2 MB"        
    "OutputResultOffset"        "0x04f38000"     "24.8 MB"        
    "SchedulerDataOffset"       "0x067fe000"     "10.4 MB"        
    "SystemBufferOffset"        "0x0726e000"     "11.4 MB"        
    "InstructionDataOffset"     "0x07dd6000"     "6.6 MB"         
    "ConvWeightDataOffset"      "0x08468000"     "50.8 MB"        
    "EndOffset"                 "0x0b728000"     "Total: 183.2 MB"

### Network compilation complete.
dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {}
             ddrInfo: [1×1 struct]
       resourceTable: [6×2 table]

To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy method of the dlhdl.Workflow object. This function uses the output of the compile function to program the FPGA board and download the network weights and biases. The deploy function starts programming the FPGA device and displays progress messages, and the required time to deploy the network.

hW.deploy
### Programming FPGA Bitstream using Ethernet...
### Attempting to connect to the hardware board at 192.168.1.101...
### Connection successful
### Programming FPGA device on Xilinx SoC hardware board at 192.168.1.101...
### Copying FPGA programming files to SD card...
### Setting FPGA bitstream and devicetree for boot...
# Copying Bitstream zcu102_single.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/zcu102_single.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'
### Rebooting Xilinx SoC at 192.168.1.101...
### Reboot may take several seconds...
### Attempting to connect to the hardware board at 192.168.1.101...
### Connection successful
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 18-Jan-2024 21:31:41

Convert the input image into a dlarray object and preprocess the image by using preprocessYOLOv4Input function.

dlimg = dlarray(single(img),"SSC");
dlimg = preprocessYOLOv4Input(dlimg);

Get the activations of the network by using the predict method of the dlhdl.Workflow object.

hwprediction = cell(size(vehicleDetector.Network.OutputNames'));
[hwprediction{:},speed] = hW.predict(dlimg,'Profile','on' );
### Finished writing input activations.
### Running single input activation.


              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   46260423                  0.21027                       1           45940307              4.8
    conv_2                 1193388                  0.00542 
    conv_3                 2308289                  0.01049 
    conv_4                 3379852                  0.01536 
    conv_6                 1000938                  0.00455 
    conv_7                 1001605                  0.00455 
    conv_9                 3368597                  0.01531 
    maxPool_11              927010                  0.00421 
    conv_12                3152610                  0.01433 
    conv_14                 842071                  0.00383 
    conv_15                 842147                  0.00383 
    conv_17                3146009                  0.01430 
    maxPool_19              497743                  0.00226 
    conv_20                2973955                  0.01352 
    conv_22                 787920                  0.00358 
    conv_23                 787760                  0.00358 
    conv_25                2973791                  0.01352 
    memSeparator_0          323176                  0.00147 
    maxPool_27              587201                  0.00267 
    conv_28                3003340                  0.01365 
    conv_29                1533063                  0.00697 
    conv_30                1527012                  0.00694 
    conv_31                1532738                  0.00697 
    conv_34                 405336                  0.00184 
    layer                    50036                  0.00023 
    conv_37                5140510                  0.02337 
    conv_38                2974102                  0.01352 
 * The clock frequency of the DL processor is: 220MHz

Process the FPGA output by using the processYOLOv4Output function and display the results.

anchorBoxes = vehicleDetector.AnchorBoxes;
outputNames = vehicleDetector.Network.OutputNames;
inputSize = vehicleDetector.InputSize;
classNames = vehicleDetector.ClassNames;
[bboxes, scores, labels] = processYOLOv4Output(vehicleDetector.AnchorBoxes,...
    inputSize, classNames, hwprediction, dlimg);
% Choose the strongest bounding box to prevent display of overlapping boxes.
[bboxesDisp, scoresDisp, ~] = selectStrongestBboxMulticlass(bboxes, scores,...
    labels , 'RatioType', 'Union', 'OverlapThreshold', 0.4);
I_ann = insertObjectAnnotation(img,'rectangle',bboxesDisp,scoresDisp);
h = figure('Name', 'YOLOv4');
imshow(I_ann)

Figure YOLOv4 contains an axes object. The axes object contains an object of type image.

Deploy Quantized Network to FPGA

Preprocess the input data set to prepare the images for int8 data type quantization.

if ~exist("vehicleImages_preprocessed","dir") % see if we've done this already
    movefile('vehicleImages','vehicleImages_preprocessed');
    unzip vehicleDatasetImages.zip
end
data_path = fullfile(pwd,'vehicleImages_preprocessed');
imageData = imageDatastore(data_path);
% Pre-process each image and save it back to the file
for i=1:length(imageData.Files)
    im = imread(imageData.Files{i});
    imPre = imresize(im, [416,416]);
    imPre = preprocessYOLOv4Input(imPre);
    imwrite(uint8(imPre), imageData.Files{i});
end

Quantize the network by using the dlquantizer object. Use the calibrate method to exercise the network by using sample inputs to collect the range information.

dlQuantObj = dlquantizer(net,'ExecutionEnvironment','FPGA');
dlQuantObj.calibrate(imageData);

Prepare the network for deployment by creating a dlhdl.Workflow object. Specify the quantized network and the bitstream name. The bitstream uses the int8 data type.

hW = dlhdl.Workflow("Network", dlQuantObj, "Bitstream", "zcu102_int8", "Target", hTarget);

To compile the network and generate the instructions, weights, and biases for deployment, run the compile method of the dlhdl.Workflow object.

dn = compile(hW)
### Compiling network for Deep Learning FPGA prototyping ...
### Targeting FPGA bitstream zcu102_int8.
### An output layer called 'Output1_conv_31' of type 'nnet.cnn.layer.RegressionOutputLayer' has been added to the provided network. This layer performs no operation during prediction and thus does not affect the output of the network.
### An output layer called 'Output2_conv_38' of type 'nnet.cnn.layer.RegressionOutputLayer' has been added to the provided network. This layer performs no operation during prediction and thus does not affect the output of the network.
### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer'
### The network includes the following layers:
     1   'input_1'           Image Input              416×416×3 images                                                    (SW Layer)
     2   'conv_2'            2-D Convolution          32 3×3×3 convolutions with stride [2  2] and padding [1  1  1  1]   (HW Layer)
     3   'leaky_2'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
     4   'conv_3'            2-D Convolution          64 3×3×32 convolutions with stride [2  2] and padding [1  1  1  1]  (HW Layer)
     5   'leaky_3'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
     6   'conv_4'            2-D Convolution          64 3×3×64 convolutions with stride [1  1] and padding 'same'        (HW Layer)
     7   'leaky_4'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
     8   'slice_5'           dlhdl.layer.sliceLayer   dlhdl.layer.sliceLayer                                              (HW Layer)
     9   'conv_6'            2-D Convolution          32 3×3×32 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    10   'leaky_6'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    11   'conv_7'            2-D Convolution          32 3×3×32 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    12   'leaky_7'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    13   'concat_8'          Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    14   'conv_9'            2-D Convolution          64 1×1×64 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    15   'leaky_9'           Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    16   'concat_10'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    17   'maxPool_11'        2-D Max Pooling          2×2 max pooling with stride [2  2] and padding 'same'               (HW Layer)
    18   'conv_12'           2-D Convolution          128 3×3×128 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    19   'leaky_12'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    20   'slice_13'          dlhdl.layer.sliceLayer   dlhdl.layer.sliceLayer                                              (HW Layer)
    21   'conv_14'           2-D Convolution          64 3×3×64 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    22   'leaky_14'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    23   'conv_15'           2-D Convolution          64 3×3×64 convolutions with stride [1  1] and padding 'same'        (HW Layer)
    24   'leaky_15'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    25   'concat_16'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    26   'conv_17'           2-D Convolution          128 1×1×128 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    27   'leaky_17'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    28   'concat_18'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    29   'maxPool_19'        2-D Max Pooling          2×2 max pooling with stride [2  2] and padding 'same'               (HW Layer)
    30   'conv_20'           2-D Convolution          256 3×3×256 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    31   'leaky_20'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    32   'slice_21'          dlhdl.layer.sliceLayer   dlhdl.layer.sliceLayer                                              (HW Layer)
    33   'conv_22'           2-D Convolution          128 3×3×128 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    34   'leaky_22'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    35   'conv_23'           2-D Convolution          128 3×3×128 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    36   'leaky_23'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    37   'concat_24'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    38   'conv_25'           2-D Convolution          256 1×1×256 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    39   'leaky_25'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    40   'concat_26'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    41   'maxPool_27'        2-D Max Pooling          2×2 max pooling with stride [2  2] and padding 'same'               (HW Layer)
    42   'conv_28'           2-D Convolution          512 3×3×512 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    43   'leaky_28'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    44   'conv_29'           2-D Convolution          256 1×1×512 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    45   'leaky_29'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    46   'conv_30'           2-D Convolution          512 3×3×256 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    47   'leaky_30'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    48   'conv_31'           2-D Convolution          255 1×1×512 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    49   'conv_34'           2-D Convolution          128 1×1×256 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    50   'leaky_34'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    51   'layer'             Resize                   Resize 2d layer with scale of [2 2].                                (HW Layer)
    52   'concat_36'         Depth concatenation      Depth concatenation of 2 inputs                                     (HW Layer)
    53   'conv_37'           2-D Convolution          256 3×3×384 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    54   'leaky_37'          Leaky ReLU               Leaky ReLU with scale 0.1                                           (HW Layer)
    55   'conv_38'           2-D Convolution          255 1×1×256 convolutions with stride [1  1] and padding 'same'      (HW Layer)
    56   'Output1_conv_31'   Regression Output        mean-squared-error                                                  (SW Layer)
    57   'Output2_conv_38'   Regression Output        mean-squared-error                                                  (SW Layer)
                                                                                                                        
### Notice: The layer 'input_1' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software.
### Notice: The layer 'Output1_conv_31' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
### Notice: The layer 'Output2_conv_38' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software.
### Compiling layer group: conv_2>>leaky_4 ...
### Compiling layer group: conv_2>>leaky_4 ... complete.
### Compiling layer group: conv_6>>leaky_6 ...
### Compiling layer group: conv_6>>leaky_6 ... complete.
### Compiling layer group: conv_7>>leaky_7 ...
### Compiling layer group: conv_7>>leaky_7 ... complete.
### Compiling layer group: conv_9>>leaky_9 ...
### Compiling layer group: conv_9>>leaky_9 ... complete.
### Compiling layer group: maxPool_11>>leaky_12 ...
### Compiling layer group: maxPool_11>>leaky_12 ... complete.
### Compiling layer group: conv_14>>leaky_14 ...
### Compiling layer group: conv_14>>leaky_14 ... complete.
### Compiling layer group: conv_15>>leaky_15 ...
### Compiling layer group: conv_15>>leaky_15 ... complete.
### Compiling layer group: conv_17>>leaky_17 ...
### Compiling layer group: conv_17>>leaky_17 ... complete.
### Compiling layer group: maxPool_19>>leaky_20 ...
### Compiling layer group: maxPool_19>>leaky_20 ... complete.
### Compiling layer group: conv_22>>leaky_22 ...
### Compiling layer group: conv_22>>leaky_22 ... complete.
### Compiling layer group: conv_23>>leaky_23 ...
### Compiling layer group: conv_23>>leaky_23 ... complete.
### Compiling layer group: conv_25>>leaky_25 ...
### Compiling layer group: conv_25>>leaky_25 ... complete.
### Compiling layer group: maxPool_27>>leaky_29 ...
### Compiling layer group: maxPool_27>>leaky_29 ... complete.
### Compiling layer group: conv_30>>conv_31 ...
### Compiling layer group: conv_30>>conv_31 ... complete.
### Compiling layer group: conv_34>>leaky_34 ...
### Compiling layer group: conv_34>>leaky_34 ... complete.
### Compiling layer group: conv_37>>conv_38 ...
### Compiling layer group: conv_37>>conv_38 ... complete.

### Allocating external memory buffers:

          offset_name          offset_address    allocated_space 
    _______________________    ______________    ________________

    "InputDataOffset"           "0x00000000"     "39.6 MB"       
    "OutputResultOffset"        "0x0279c000"     "6.2 MB"        
    "SchedulerDataOffset"       "0x02dd4000"     "3.0 MB"        
    "SystemBufferOffset"        "0x030e0000"     "2.9 MB"        
    "InstructionDataOffset"     "0x033bd000"     "3.3 MB"        
    "ConvWeightDataOffset"      "0x03715000"     "13.7 MB"       
    "EndOffset"                 "0x044ce000"     "Total: 68.8 MB"

### Network compilation complete.
dn = struct with fields:
             weights: [1×1 struct]
        instructions: [1×1 struct]
           registers: [1×1 struct]
    syncInstructions: [1×1 struct]
        constantData: {}
             ddrInfo: [1×1 struct]
       resourceTable: [6×2 table]

To deploy the network on the hardware, run the deploy method of the dlhdl.Workflow object.

hW.deploy
### Programming FPGA Bitstream using Ethernet...
### Attempting to connect to the hardware board at 192.168.1.101...
### Connection successful
### Programming FPGA device on Xilinx SoC hardware board at 192.168.1.101...
### Copying FPGA programming files to SD card...
### Setting FPGA bitstream and devicetree for boot...
# Copying Bitstream zcu102_int8.bit to /mnt/hdlcoder_rd
# Set Bitstream to hdlcoder_rd/zcu102_int8.bit
# Copying Devicetree devicetree_dlhdl.dtb to /mnt/hdlcoder_rd
# Set Devicetree to hdlcoder_rd/devicetree_dlhdl.dtb
# Set up boot for Reference Design: 'AXI-Stream DDR Memory Access : 3-AXIM'
### Rebooting Xilinx SoC at 192.168.1.101...
### Reboot may take several seconds...
### Attempting to connect to the hardware board at 192.168.1.101...
### Connection successful
### Programming the FPGA bitstream has been completed successfully.
### Loading weights to Conv Processor.
### Conv Weights loaded. Current time is 18-Jan-2024 21:35:10

Get the activations of the network using the predict method of the dlhdl.Workflow object.

hwprediction = cell(size(vehicleDetector.Network.OutputNames'));
[hwprediction{:},speed] = hW.predict(dlimg,'Profile','on' );
### Finished writing input activations.
### Running single input activation.


              Deep Learning Processor Profiler Performance Results

                   LastFrameLatency(cycles)   LastFrameLatency(seconds)       FramesNum      Total Latency     Frames/s
                         -------------             -------------              ---------        ---------       ---------
Network                   13505613                  0.05402                       1           13419673             18.6
    conv_2                  613674                  0.00245 
    conv_3                  712571                  0.00285 
    conv_4                  940825                  0.00376 
    slice_5                 210172                  0.00084 
    conv_6                  297565                  0.00119 
    conv_7                  297503                  0.00119 
    conv_9                  936891                  0.00375 
    maxPool_11              373035                  0.00149 
    conv_12                 854799                  0.00342 
    slice_13                105831                  0.00042 
    conv_14                 234361                  0.00094 
    conv_15                 234227                  0.00094 
    conv_17                 853371                  0.00341 
    maxPool_19              208335                  0.00083 
    conv_20                 775766                  0.00310 
    slice_21                 52481                  0.00021 
    conv_22                 213165                  0.00085 
    conv_23                 213514                  0.00085 
    conv_25                 775916                  0.00310 
    memSeparator_0           89294                  0.00036 
    maxPool_27              219552                  0.00088 
    conv_28                 780302                  0.00312 
    conv_29                 405659                  0.00162 
    conv_30                 402281                  0.00161 
    conv_31                 405040                  0.00162 
    conv_34                 112118                  0.00045 
    layer                    24682                  0.00010 
    conv_37                1386418                  0.00555 
    conv_38                 776041                  0.00310 
 * The clock frequency of the DL processor is: 250MHz

Note that the throughput is significantly higher with the quantized network than the single precision version.

Process the FPGA output by using the processYOLOv4Output function and display the results.

[bboxes, scores, labels] = processYOLOv4Output(vehicleDetector.AnchorBoxes, inputSize, classNames, hwprediction, dlimg);
% Choose the strongest bounding box to prevent display of overlapping boxes.
[bboxesDisp, scoresDisp, ~] = selectStrongestBboxMulticlass(bboxes, scores, labels ,...
    'RatioType', 'Union', 'OverlapThreshold', 0.4);
I_ann = insertObjectAnnotation(img,'rectangle',bboxesDisp,scoresDisp);
h = figure('Name', 'YOLOv4 INT8');
imshow(I_ann)

Figure YOLOv4 INT8 contains an axes object. The axes object contains an object of type image.

Helper Functions

function output = preprocessYOLOv4Input(image)
    % Pre-process the input
    image = imresize(image,[416,416]);
    output = single(rescale(image));
end

function [bboxes, scores, labels] = processYOLOv4Output(anchorBoxes, inputSize, classNames, features, img);
    % This function converts the feature maps from multiple detection heads to
    % bounding boxes, scores and labels
    % Breaks down the raw output from predict function into Confidence score,
    % X, Y, Width, Height and Class probabilities for each output from
    % detection head
    predictions = iYolov4Transform(features, anchorBoxes);
    % Initialize parameters for post-processing
    params.Threshold = 0.5;
    params.NetworkInputSize = inputSize;
    % Post-process the predictions to get bounding boxes, scores and labels
    [bboxes, scores, labels] = postprocessMultipleDetections(anchorBoxes, classNames, predictions, params);
end

function [bboxes, scores, labels] = postprocessMultipleDetections(anchorBoxes,classNames, YPredData, params)
    % Post-process the predictions to get bounding boxes, scores and labels
    % YpredData is a (x,8) cell array, where x = number of detection heads
    % Information in each column is:
    % column 1 -> confidence scores
    % column 2 to column 5 -> X offset, Y offset, Width, Height of anchor boxes
    % column 6 -> class probabilities
    % column 7-8 -> copy of width and height of anchor boxes
    % Initialize parameters for post-processing
    classes = classNames;
    predictions = YPredData;
    extractPredictions = cell(size(predictions));
    % Extract dlarray data
    for i = 1:size(extractPredictions,1)
        for j = 1:size(extractPredictions,2)
            extractPredictions{i,j} = extractdata(predictions{i,j});
        end
    end
    % Storing the values of columns 2 to 5 of extractPredictions
    % Columns 2 to 5 represent information about X-coordinate, Y-coordinate, Width
    % and Height of predicted anchor boxes
    extractedCoordinates = cell(size(predictions,1),4);
    for i = 1:size(predictions,1)
        for j = 2:5
            extractedCoordinates{i,j-1} = extractPredictions{i,j};
        end
    end
    % Convert predictions from grid cell coordinates to box coordinates.
    boxCoordinates = anchorBoxGenerator(anchorBoxes, extractedCoordinates, params.NetworkInputSize);
    % Replace grid cell coordinates in extractPredictions with box coordinates
    for i = 1:size(YPredData,1)
        for j = 2:5
            extractPredictions{i,j} = single(boxCoordinates{i,j-1});
        end
    end
    % 1. Convert bboxes from spatial to pixel dimension
    % 2. Combine the prediction from different heads.
    % 3. Filter detections based on threshold.
    % Reshaping the matrices corresponding to confidence scores and
    % bounding boxes
    detections = cell(size(YPredData,1),6);
    for i = 1:size(detections,1)
        for j = 1:5
            detections{i,j} = reshapePredictions(extractPredictions{i,j});
        end
    end
    % Reshaping the matrices corresponding to class probablities
    numClasses = repmat({numel(classes)},[size(detections,1),1]);
    for i = 1:size(detections,1)
        detections{i,6} = reshapeClasses(extractPredictions{i,6},numClasses{i,1});
    end
    % cell2mat converts the cell of matrices into one matrix, this combines the
    % predictions of all detection heads
    detections = cell2mat(detections);
    % Getting the most probable class and corresponding index
    [classProbs, classIdx] = max(detections(:,6:end),[],2);
    detections(:,1) = detections(:,1).*classProbs;
    detections(:,6) = classIdx;
    % Keep detections whose confidence score is greater than threshold.
    detections = detections(detections(:,1) >= params.Threshold,:);
    [bboxes, scores, labels] = getBoxes(detections);
end

function [bboxes, scores, classIds] = getBoxes(detections)
    % Resizes the anchor boxes, filters anchor boxes based on size and apply
    % NMS to eliminate overlapping anchor boxes
    % Obtain bounding boxes and class data for pre-processed image
    scores = detections(:,1);
    bboxPred = detections(:,2:5);
    classIds = detections(:,6);
    % Resize boxes to actual image size
    scale = [416 416 416 416];
    bboxPred = bboxPred.*scale;
    % Convert x and y position of detections from centre to top-left.
    bboxes = convertCenterToTopLeft(bboxPred);
end

function x = reshapePredictions(pred)
    % Reshapes the matrices corresponding to scores, X, Y, Width and Height to
    % make them compatible for combining the outputs of different detection
    % heads
    [h,w,c,n] = size(pred);
    x = reshape(pred,h*w*c,1,n);
end

function x = reshapeClasses(pred,numClasses)
    % Reshapes the matrices corresponding to the class probabilities, to make it
    % compatible for combining the outputs of different detection heads
    [h,w,c,n] = size(pred);
    numAnchors = c/numClasses;
    x = reshape(pred,h*w,numClasses,numAnchors,n);
    x = permute(x,[1,3,2,4]);
    [h,w,c,n] = size(x);
    x = reshape(x,h*w,c,n);
end

function bboxes = convertCenterToTopLeft(bboxes)
    % Convert x and y position of detections from centre to top-left.
    bboxes(:,1) = bboxes(:,1) - bboxes(:,3)/2 + 0.5;
    bboxes(:,2) = bboxes(:,2) - bboxes(:,4)/2 + 0.5;
    bboxes = floor(bboxes);
    bboxes(bboxes<1) = 1;
end

function tiledAnchors = anchorBoxGenerator(anchorBoxes, YPredCell, inputImageSize)
    % Convert grid cell coordinates to box coordinates.
    % Generate tiled anchor offset.
    tiledAnchors = cell(size(YPredCell));
    for i = 1:size(YPredCell,1)
        anchors = anchorBoxes{i,:};
        [h,w,~,n] = size(YPredCell{i,1});
        [tiledAnchors{i,2},tiledAnchors{i,1}] = ndgrid(0:h-1,0:w-1,1:size(anchors,1),1:n);
        [~,~,tiledAnchors{i,3}] = ndgrid(0:h-1,0:w-1,anchors(:,2),1:n);
        [~,~,tiledAnchors{i,4}] = ndgrid(0:h-1,0:w-1,anchors(:,1),1:n);
    end
    for i = 1:size(YPredCell,1)
        [h,w,~,~] = size(YPredCell{i,1});
        tiledAnchors{i,1} = double((tiledAnchors{i,1} + YPredCell{i,1})./w);
        tiledAnchors{i,2} = double((tiledAnchors{i,2} + YPredCell{i,2})./h);
        tiledAnchors{i,3} = double((tiledAnchors{i,3}.*YPredCell{i,3})./inputImageSize(2));
        tiledAnchors{i,4} = double((tiledAnchors{i,4}.*YPredCell{i,4})./inputImageSize(1));
    end
end

function predictions = iYolov4Transform(YPredictions, anchorBoxes)
    % This function breaks down the raw output from predict function into
    % Confidence score, X, Y, Width,
    % Height and Class probabilities for each output from detection head
    predictions = cell(size(YPredictions,1),size(YPredictions,2) + 2);
    for idx = 1:size(YPredictions,1)
        % Get the required info on feature size.
        numChannelsPred = size(YPredictions{idx},3); %number of channels in a feature map
        numAnchors = size(anchorBoxes{idx},1); %number of anchor boxes per grid
        numPredElemsPerAnchors = numChannelsPred/numAnchors;
        channelsPredIdx = 1:numChannelsPred;
        predictionIdx = ones([1,numAnchors.*5]);
        % X positions.
        startIdx = 1;
        endIdx = numChannelsPred;
        stride = numPredElemsPerAnchors;
        predictions{idx,2} = YPredictions{idx}(:,:,startIdx:stride:endIdx,:);
        predictionIdx = [predictionIdx startIdx:stride:endIdx];
        % Y positions.
        startIdx = 2;
        endIdx = numChannelsPred;
        stride = numPredElemsPerAnchors;
        predictions{idx,3} = YPredictions{idx}(:,:,startIdx:stride:endIdx,:);
        predictionIdx = [predictionIdx startIdx:stride:endIdx];
        % Width.
        startIdx = 3;
        endIdx = numChannelsPred;
        stride = numPredElemsPerAnchors;
        predictions{idx,4} = YPredictions{idx}(:,:,startIdx:stride:endIdx,:);
        predictionIdx = [predictionIdx startIdx:stride:endIdx];
        % Height.
        startIdx = 4;
        endIdx = numChannelsPred;
        stride = numPredElemsPerAnchors;
        predictions{idx,5} = YPredictions{idx}(:,:,startIdx:stride:endIdx,:);
        predictionIdx = [predictionIdx startIdx:stride:endIdx];
        % Confidence scores.
        startIdx = 5;
        endIdx = numChannelsPred;
        stride = numPredElemsPerAnchors;
        predictions{idx,1} = YPredictions{idx}(:,:,startIdx:stride:endIdx,:);
        predictionIdx = [predictionIdx startIdx:stride:endIdx];
        % Class probabilities.
        classIdx = setdiff(channelsPredIdx,predictionIdx);
        predictions{idx,6} = YPredictions{idx}(:,:,classIdx,:);
    end
    for i = 1:size(predictions,1)
        predictions{i,7} = predictions{i,4};
        predictions{i,8} = predictions{i,5};
    end
    % Apply activation to the predicted cell array
    % Apply sigmoid activation to columns 1-3 (Confidence score, X, Y)
    for i = 1:size(predictions,1)
        for j = 1:3
            predictions{i,j} = sigmoid(predictions{i,j});
        end
    end
    % Apply exponentiation to columns 4-5 (Width, Height)
    for i = 1:size(predictions,1)
        for j = 4:5
            predictions{i,j} = exp(predictions{i,j});
        end
    end
    % Apply sigmoid activation to column 6 (Class probabilities)
    for i = 1:size(predictions,1)
        for j = 6
            predictions{i,j} = sigmoid(predictions{i,j});
        end
    end
end

See Also

| | | |

Go to top of page