Classify ECG Signals in Simulink Using Deep Learning
This example shows how to use wavelet transforms and a deep learning network within a Simulink (R) model to classify ECG signals. This example uses the pretrained convolutional neural network from the Classify Time Series Using Wavelet Analysis and Deep Learning example of the Wavelet Toolbox™ to classify ECG signals based on images from the CWT of the time series data. For information on training, see Classify Time Series Using Wavelet Analysis and Deep Learning (Wavelet Toolbox).
ECG Data Description
This example uses ECG data from PhysioNet database. It contains data from three groups of people:
Persons with cardiac arrhythmia (ARR)
Persons with congestive heart failure (CHF)
Persons with normal sinus rhythms (NSR)
It includes 96 recordings from persons with ARR, 30 recordings from persons with CHF, and 36 recordings from persons with NSR. The ecg_signals
MAT-file contains the test ECG data in time series format. The image classifier in this example distinguishes between ARR, CHF, and NSR.
Algorithmic Workflow
The block diagram for the algorithmic workflow of the Simulink model is shown.
ECG Deep Learning Simulink Model
The Simulink model for classifying the ECG signals is shown. When the model runs, the Video Viewer
block displays the classified ECG signal.
open_system('ecg_dl_cwtMDL');
ECG Preprocessing Subsystem
The ECG Preprocessing
subsystem contains a MATLAB Function
block that performs CWT to obtain scalogram of the ECG signal and then processes the scalogram to obtain an image. It also contains an Image Classifier
block from the Deep Learning Toolbox™ that loads the pretrained network from trainedDLNet.mat
and performs prediction for image classification based on SqueezeNet deep learning CNN.
open_system('ecg_dl_cwtMDL/ECG Preprocessing');
The ScalogramFromECG
function block defines a function called ecg_to_scalogram
that:
Uses 65536 samples of double-precision ECG data as input.
Create time frequency representation from the ECG data by applying Wavelet transform.
Obtain scalogram from the wavelet coefficients.
Convert the scalogram to image of size (227-by-227-by-3).
The function signature of ecg_to_scalogram
is shown.
type ecg_to_scalogram
function ecg_image = ecg_to_scalogram(ecg_signal) % Copyright 2020 The MathWorks, Inc. persistent jetdata; if(isempty(jetdata)) jetdata = ecgColorMap(128,'single'); end % Obtain wavelet coefficients from ECG signal cfs = cwt_ecg(ecg_signal); % Obtain scalogram from wavelet coefficients image = ind2rgb(im2uint8(rescale(cfs)),jetdata); ecg_image = im2uint8(imresize(image,[227,227])); end
ECG Postprocessing
The ECG Postprocessing
MATLAB function block defines the label_prob_image
function that finds the label for the scalogram image based on the highest score from the scores outputed by the image classifier. It outputs the scalogram image with the label and confidence overlayed.
type label_prob_image
function final_image = label_prob_image(ecg_image, scores, labels) % Copyright 2020-2021 The MathWorks, Inc. scores = double(scores); % Obtain maximum confidence [prob,index] = max(scores); confidence = prob*100; % Obtain label corresponding to maximum confidence label = erase(char(labels(index)),'_label'); text = cell(2,1); text{1} = ['Classification: ' label]; text{2} = ['Confidence: ' sprintf('%0.2f',confidence) '%']; position = [135 20 0 0; 130 40 0 0]; final_image = insertObjectAnnotation(ecg_image,'rectangle',position,... text,'TextBoxOpacity',0.9,'FontSize',9); end
Run the Simulation
The three diagnostic categories of ECG signals are: 'ARR', 'CHF', and 'NSR'. To verify the algorithm and display the labels and confidence score of the test ECG signal loaded in the workspace, run the simulation.
classNames = {'ARR';'CHF';'NSR'}; set_param('ecg_dl_cwtMDL', 'SimulationMode', 'Normal'); sim('ecg_dl_cwtMDL');
Code Generation
With GPU Coder™, you can accelerate the execution of model on NVIDIA® GPUs and generate CUDA® code for model. See the Code Generation for a Deep Learning Simulink Model to Classify ECG Signals (GPU Coder) for more details.
Cleanup
Close the Simulink model.
close_system('ecg_dl_cwtMDL/ECG Preprocessing'); close_system('ecg_dl_cwtMDL');