summarize
Distribution summary statistics of Bayesian vector autoregression (VAR) model
Description
summarize( displays, at the command line, a tabular summary of the coefficients of the Bayesian VAR(p) model
Mdl)Mdl, and the innovations covariance matrix. The summary includes the means and standard deviations of the distribution Mdl represents.
Examples
Consider the 3-D VAR(4) model for the US inflation (INFL), unemployment (UNRATE), and federal funds (FEDFUNDS) rates.
For all , is a series of independent 3-D normal innovations with a mean of 0 and covariance . Assume that a prior distribution governs the behavior of the parameters. Consider using Minnesota regularization to obtain a parsimonious representation of the coefficient posterior distribution.
For each supported prior assumption, create the corresponding Bayesian VAR(4) model object for the three response variables by using bayesvarm. For each model that supports the option, specify all the following.
The response variable names.
Prior self-lag coefficients have variance 100. This large-variance setting allows the data to influence the posterior more than the prior.
Prior cross-lag coefficients have variance 1. This small-variance setting tightens the cross-lag coefficients to zero during estimation.
Prior coefficient covariances decay with increasing lag at a rate of 2 (that is, lower lags are more important than larger lags).
For the normal conjugate prior model, assume that the innovations covariance is the 3-D identity matrix.
seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; numseries = numel(seriesnames); numlags = 4; DiffusePriorMdl = bayesvarm(numseries,numlags,'SeriesNames',seriesnames); ConjugatePriorMdl = bayesvarm(numseries,numlags,'ModelType','conjugate',... 'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'Decay',2); SemiConjugatePriorMdl = bayesvarm(numseries,numlags,'ModelType','semiconjugate',... 'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'CrossLag',1,'Decay',2); NormalPriorMdl = bayesvarm(numseries,numlags,'ModelType','normal',... 'SeriesNames',seriesnames,'Center',0.75,'SelfLag',100,'CrossLag',1,'Decay',2,... 'Sigma',eye(numseries));
For each model, display summary of the prior distribution.
summarize(DiffusePriorMdl)
| Mean Std
-------------------------
Constant(1) | 0 Inf
Constant(2) | 0 Inf
Constant(3) | 0 Inf
AR{1}(1,1) | 0 Inf
AR{1}(2,1) | 0 Inf
AR{1}(3,1) | 0 Inf
AR{1}(1,2) | 0 Inf
AR{1}(2,2) | 0 Inf
AR{1}(3,2) | 0 Inf
AR{1}(1,3) | 0 Inf
AR{1}(2,3) | 0 Inf
AR{1}(3,3) | 0 Inf
AR{2}(1,1) | 0 Inf
AR{2}(2,1) | 0 Inf
AR{2}(3,1) | 0 Inf
AR{2}(1,2) | 0 Inf
AR{2}(2,2) | 0 Inf
AR{2}(3,2) | 0 Inf
AR{2}(1,3) | 0 Inf
AR{2}(2,3) | 0 Inf
AR{2}(3,3) | 0 Inf
AR{3}(1,1) | 0 Inf
AR{3}(2,1) | 0 Inf
AR{3}(3,1) | 0 Inf
AR{3}(1,2) | 0 Inf
AR{3}(2,2) | 0 Inf
AR{3}(3,2) | 0 Inf
AR{3}(1,3) | 0 Inf
AR{3}(2,3) | 0 Inf
AR{3}(3,3) | 0 Inf
AR{4}(1,1) | 0 Inf
AR{4}(2,1) | 0 Inf
AR{4}(3,1) | 0 Inf
AR{4}(1,2) | 0 Inf
AR{4}(2,2) | 0 Inf
AR{4}(3,2) | 0 Inf
AR{4}(1,3) | 0 Inf
AR{4}(2,3) | 0 Inf
AR{4}(3,3) | 0 Inf
Innovations Covariance Matrix
| INFL UNRATE FEDFUNDS
------------------------------------
INFL | NaN NaN NaN
| (NaN) (NaN) (NaN)
UNRATE | NaN NaN NaN
| (NaN) (NaN) (NaN)
FEDFUNDS | NaN NaN NaN
| (NaN) (NaN) (NaN)
Diffuse prior models put equal weight on all model coefficients. This specification allows the data to determine the posterior distribution.
summarize(ConjugatePriorMdl)
| Mean Std
-------------------------------
Constant(1) | 0 33.3333
Constant(2) | 0 33.3333
Constant(3) | 0 33.3333
AR{1}(1,1) | 0.7500 3.3333
AR{1}(2,1) | 0 3.3333
AR{1}(3,1) | 0 3.3333
AR{1}(1,2) | 0 3.3333
AR{1}(2,2) | 0.7500 3.3333
AR{1}(3,2) | 0 3.3333
AR{1}(1,3) | 0 3.3333
AR{1}(2,3) | 0 3.3333
AR{1}(3,3) | 0.7500 3.3333
AR{2}(1,1) | 0 1.6667
AR{2}(2,1) | 0 1.6667
AR{2}(3,1) | 0 1.6667
AR{2}(1,2) | 0 1.6667
AR{2}(2,2) | 0 1.6667
AR{2}(3,2) | 0 1.6667
AR{2}(1,3) | 0 1.6667
AR{2}(2,3) | 0 1.6667
AR{2}(3,3) | 0 1.6667
AR{3}(1,1) | 0 1.1111
AR{3}(2,1) | 0 1.1111
AR{3}(3,1) | 0 1.1111
AR{3}(1,2) | 0 1.1111
AR{3}(2,2) | 0 1.1111
AR{3}(3,2) | 0 1.1111
AR{3}(1,3) | 0 1.1111
AR{3}(2,3) | 0 1.1111
AR{3}(3,3) | 0 1.1111
AR{4}(1,1) | 0 0.8333
AR{4}(2,1) | 0 0.8333
AR{4}(3,1) | 0 0.8333
AR{4}(1,2) | 0 0.8333
AR{4}(2,2) | 0 0.8333
AR{4}(3,2) | 0 0.8333
AR{4}(1,3) | 0 0.8333
AR{4}(2,3) | 0 0.8333
AR{4}(3,3) | 0 0.8333
Innovations Covariance Matrix
| INFL UNRATE FEDFUNDS
-----------------------------------------
INFL | 0.1111 0 0
| (0.0594) (0.0398) (0.0398)
UNRATE | 0 0.1111 0
| (0.0398) (0.0594) (0.0398)
FEDFUNDS | 0 0 0.1111
| (0.0398) (0.0398) (0.0594)
With a tighter prior variance around 0 for larger lags, the posterior of the conjugate model is likely to be more sparse that the posterior of the diffuse model.
summarize(SemiConjugatePriorMdl)
| Mean Std
------------------------------
Constant(1) | 0 100
Constant(2) | 0 100
Constant(3) | 0 100
AR{1}(1,1) | 0.7500 10
AR{1}(2,1) | 0 1
AR{1}(3,1) | 0 1
AR{1}(1,2) | 0 1
AR{1}(2,2) | 0.7500 10
AR{1}(3,2) | 0 1
AR{1}(1,3) | 0 1
AR{1}(2,3) | 0 1
AR{1}(3,3) | 0.7500 10
AR{2}(1,1) | 0 5
AR{2}(2,1) | 0 0.5000
AR{2}(3,1) | 0 0.5000
AR{2}(1,2) | 0 0.5000
AR{2}(2,2) | 0 5
AR{2}(3,2) | 0 0.5000
AR{2}(1,3) | 0 0.5000
AR{2}(2,3) | 0 0.5000
AR{2}(3,3) | 0 5
AR{3}(1,1) | 0 3.3333
AR{3}(2,1) | 0 0.3333
AR{3}(3,1) | 0 0.3333
AR{3}(1,2) | 0 0.3333
AR{3}(2,2) | 0 3.3333
AR{3}(3,2) | 0 0.3333
AR{3}(1,3) | 0 0.3333
AR{3}(2,3) | 0 0.3333
AR{3}(3,3) | 0 3.3333
AR{4}(1,1) | 0 2.5000
AR{4}(2,1) | 0 0.2500
AR{4}(3,1) | 0 0.2500
AR{4}(1,2) | 0 0.2500
AR{4}(2,2) | 0 2.5000
AR{4}(3,2) | 0 0.2500
AR{4}(1,3) | 0 0.2500
AR{4}(2,3) | 0 0.2500
AR{4}(3,3) | 0 2.5000
Innovations Covariance Matrix
| INFL UNRATE FEDFUNDS
-----------------------------------------
INFL | 0.1111 0 0
| (0.0594) (0.0398) (0.0398)
UNRATE | 0 0.1111 0
| (0.0398) (0.0594) (0.0398)
FEDFUNDS | 0 0 0.1111
| (0.0398) (0.0398) (0.0594)
summarize(NormalPriorMdl)
| Mean Std
------------------------------
Constant(1) | 0 100
Constant(2) | 0 100
Constant(3) | 0 100
AR{1}(1,1) | 0.7500 10
AR{1}(2,1) | 0 1
AR{1}(3,1) | 0 1
AR{1}(1,2) | 0 1
AR{1}(2,2) | 0.7500 10
AR{1}(3,2) | 0 1
AR{1}(1,3) | 0 1
AR{1}(2,3) | 0 1
AR{1}(3,3) | 0.7500 10
AR{2}(1,1) | 0 5
AR{2}(2,1) | 0 0.5000
AR{2}(3,1) | 0 0.5000
AR{2}(1,2) | 0 0.5000
AR{2}(2,2) | 0 5
AR{2}(3,2) | 0 0.5000
AR{2}(1,3) | 0 0.5000
AR{2}(2,3) | 0 0.5000
AR{2}(3,3) | 0 5
AR{3}(1,1) | 0 3.3333
AR{3}(2,1) | 0 0.3333
AR{3}(3,1) | 0 0.3333
AR{3}(1,2) | 0 0.3333
AR{3}(2,2) | 0 3.3333
AR{3}(3,2) | 0 0.3333
AR{3}(1,3) | 0 0.3333
AR{3}(2,3) | 0 0.3333
AR{3}(3,3) | 0 3.3333
AR{4}(1,1) | 0 2.5000
AR{4}(2,1) | 0 0.2500
AR{4}(3,1) | 0 0.2500
AR{4}(1,2) | 0 0.2500
AR{4}(2,2) | 0 2.5000
AR{4}(3,2) | 0 0.2500
AR{4}(1,3) | 0 0.2500
AR{4}(2,3) | 0 0.2500
AR{4}(3,3) | 0 2.5000
Innovations Covariance Matrix
| INFL UNRATE FEDFUNDS
-----------------------------------
INFL | 1 0 0
| (0) (0) (0)
UNRATE | 0 1 0
| (0) (0) (0)
FEDFUNDS | 0 0 1
| (0) (0) (0)
Semiconjugate and normal conjugate prior models yield a richer prior specification than the conjugate and diffuse models.
Consider the 3-D VAR(4) model of Inspect Minnesota Prior Assumptions Among Models. Assume that the prior distribution is diffuse.
Load the US macroeconomic data set. Compute the inflation rate, stabilize the unemployment and federal funds rates, and remove missing values.
load Data_USEconModel seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; DataTimeTable.INFL = 100*[NaN; price2ret(DataTimeTable.CPIAUCSL)]; DataTimeTable.DUNRATE = [NaN; diff(DataTimeTable.UNRATE)]; DataTimeTable.DFEDFUNDS = [NaN; diff(DataTimeTable.FEDFUNDS)]; seriesnames(2:3) = "D" + seriesnames(2:3); rmDataTimeTable = rmmissing(DataTimeTable);
Create a diffuse Bayesian VAR(4) prior model for the three response series. Specify the response variable names.
numseries = numel(seriesnames);
numlags = 4;
PriorMdl = bayesvarm(numseries,numlags,'SeriesNames',seriesnames);Estimate the posterior distribution.
PosteriorMdl = estimate(PriorMdl,rmDataTimeTable{:,seriesnames});Bayesian VAR under diffuse priors
Effective Sample Size: 197
Number of equations: 3
Number of estimated Parameters: 39
| Mean Std
-------------------------------
Constant(1) | 0.1007 0.0832
Constant(2) | -0.0499 0.0450
Constant(3) | -0.4221 0.1781
AR{1}(1,1) | 0.1241 0.0762
AR{1}(2,1) | -0.0219 0.0413
AR{1}(3,1) | -0.1586 0.1632
AR{1}(1,2) | -0.4809 0.1536
AR{1}(2,2) | 0.4716 0.0831
AR{1}(3,2) | -1.4368 0.3287
AR{1}(1,3) | 0.1005 0.0390
AR{1}(2,3) | 0.0391 0.0211
AR{1}(3,3) | -0.2905 0.0835
AR{2}(1,1) | 0.3236 0.0868
AR{2}(2,1) | 0.0913 0.0469
AR{2}(3,1) | 0.3403 0.1857
AR{2}(1,2) | -0.0503 0.1647
AR{2}(2,2) | 0.2414 0.0891
AR{2}(3,2) | -0.2968 0.3526
AR{2}(1,3) | 0.0450 0.0413
AR{2}(2,3) | 0.0536 0.0223
AR{2}(3,3) | -0.3117 0.0883
AR{3}(1,1) | 0.4272 0.0860
AR{3}(2,1) | -0.0389 0.0465
AR{3}(3,1) | 0.2848 0.1841
AR{3}(1,2) | 0.2738 0.1620
AR{3}(2,2) | 0.0552 0.0876
AR{3}(3,2) | -0.7401 0.3466
AR{3}(1,3) | 0.0523 0.0428
AR{3}(2,3) | 0.0008 0.0232
AR{3}(3,3) | 0.0028 0.0917
AR{4}(1,1) | 0.0167 0.0901
AR{4}(2,1) | 0.0285 0.0488
AR{4}(3,1) | -0.0690 0.1928
AR{4}(1,2) | -0.1830 0.1520
AR{4}(2,2) | -0.1795 0.0822
AR{4}(3,2) | 0.1494 0.3253
AR{4}(1,3) | 0.0067 0.0395
AR{4}(2,3) | 0.0088 0.0214
AR{4}(3,3) | -0.1372 0.0845
Innovations Covariance Matrix
| INFL DUNRATE DFEDFUNDS
-------------------------------------------
INFL | 0.3028 -0.0217 0.1579
| (0.0321) (0.0124) (0.0499)
DUNRATE | -0.0217 0.0887 -0.1435
| (0.0124) (0.0094) (0.0283)
DFEDFUNDS | 0.1579 -0.1435 1.3872
| (0.0499) (0.0283) (0.1470)
Summarize the posterior distribution; compare each estimation display type.
summarize(PosteriorMdl); % The default is 'table'. | Mean Std
-------------------------------
Constant(1) | 0.1007 0.0832
Constant(2) | -0.0499 0.0450
Constant(3) | -0.4221 0.1781
AR{1}(1,1) | 0.1241 0.0762
AR{1}(2,1) | -0.0219 0.0413
AR{1}(3,1) | -0.1586 0.1632
AR{1}(1,2) | -0.4809 0.1536
AR{1}(2,2) | 0.4716 0.0831
AR{1}(3,2) | -1.4368 0.3287
AR{1}(1,3) | 0.1005 0.0390
AR{1}(2,3) | 0.0391 0.0211
AR{1}(3,3) | -0.2905 0.0835
AR{2}(1,1) | 0.3236 0.0868
AR{2}(2,1) | 0.0913 0.0469
AR{2}(3,1) | 0.3403 0.1857
AR{2}(1,2) | -0.0503 0.1647
AR{2}(2,2) | 0.2414 0.0891
AR{2}(3,2) | -0.2968 0.3526
AR{2}(1,3) | 0.0450 0.0413
AR{2}(2,3) | 0.0536 0.0223
AR{2}(3,3) | -0.3117 0.0883
AR{3}(1,1) | 0.4272 0.0860
AR{3}(2,1) | -0.0389 0.0465
AR{3}(3,1) | 0.2848 0.1841
AR{3}(1,2) | 0.2738 0.1620
AR{3}(2,2) | 0.0552 0.0876
AR{3}(3,2) | -0.7401 0.3466
AR{3}(1,3) | 0.0523 0.0428
AR{3}(2,3) | 0.0008 0.0232
AR{3}(3,3) | 0.0028 0.0917
AR{4}(1,1) | 0.0167 0.0901
AR{4}(2,1) | 0.0285 0.0488
AR{4}(3,1) | -0.0690 0.1928
AR{4}(1,2) | -0.1830 0.1520
AR{4}(2,2) | -0.1795 0.0822
AR{4}(3,2) | 0.1494 0.3253
AR{4}(1,3) | 0.0067 0.0395
AR{4}(2,3) | 0.0088 0.0214
AR{4}(3,3) | -0.1372 0.0845
Innovations Covariance Matrix
| INFL DUNRATE DFEDFUNDS
-------------------------------------------
INFL | 0.3028 -0.0217 0.1579
| (0.0321) (0.0124) (0.0499)
DUNRATE | -0.0217 0.0887 -0.1435
| (0.0124) (0.0094) (0.0283)
DFEDFUNDS | 0.1579 -0.1435 1.3872
| (0.0499) (0.0283) (0.1470)
The default is the same default tabular display that estimate prints.
summarize(PosteriorMdl,'equation'); VAR Equations
| INFL(-1) DUNRATE(-1) DFEDFUNDS(-1) INFL(-2) DUNRATE(-2) DFEDFUNDS(-2) INFL(-3) DUNRATE(-3) DFEDFUNDS(-3) INFL(-4) DUNRATE(-4) DFEDFUNDS(-4) Constant
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
INFL | 0.1241 -0.4809 0.1005 0.3236 -0.0503 0.0450 0.4272 0.2738 0.0523 0.0167 -0.1830 0.0067 0.1007
| (0.0762) (0.1536) (0.0390) (0.0868) (0.1647) (0.0413) (0.0860) (0.1620) (0.0428) (0.0901) (0.1520) (0.0395) (0.0832)
DUNRATE | -0.0219 0.4716 0.0391 0.0913 0.2414 0.0536 -0.0389 0.0552 0.0008 0.0285 -0.1795 0.0088 -0.0499
| (0.0413) (0.0831) (0.0211) (0.0469) (0.0891) (0.0223) (0.0465) (0.0876) (0.0232) (0.0488) (0.0822) (0.0214) (0.0450)
DFEDFUNDS | -0.1586 -1.4368 -0.2905 0.3403 -0.2968 -0.3117 0.2848 -0.7401 0.0028 -0.0690 0.1494 -0.1372 -0.4221
| (0.1632) (0.3287) (0.0835) (0.1857) (0.3526) (0.0883) (0.1841) (0.3466) (0.0917) (0.1928) (0.3253) (0.0845) (0.1781)
Innovations Covariance Matrix
| INFL DUNRATE DFEDFUNDS
-------------------------------------------
INFL | 0.3028 -0.0217 0.1579
| (0.0321) (0.0124) (0.0499)
DUNRATE | -0.0217 0.0887 -0.1435
| (0.0124) (0.0094) (0.0283)
DFEDFUNDS | 0.1579 -0.1435 1.3872
| (0.0499) (0.0283) (0.1470)
In the 'equation' display, rows correspond to response equations in the VAR system, and columns correspond to lagged response variables within equations. Elements in the table correspond to the posterior means of the corresponding coefficient; under each mean in parentheses is the standard deviation of the posterior.
summarize(PosteriorMdl,'matrix'); VAR Coefficient Matrix of Lag 1
| INFL(-1) DUNRATE(-1) DFEDFUNDS(-1)
--------------------------------------------------
INFL | 0.1241 -0.4809 0.1005
| (0.0762) (0.1536) (0.0390)
DUNRATE | -0.0219 0.4716 0.0391
| (0.0413) (0.0831) (0.0211)
DFEDFUNDS | -0.1586 -1.4368 -0.2905
| (0.1632) (0.3287) (0.0835)
VAR Coefficient Matrix of Lag 2
| INFL(-2) DUNRATE(-2) DFEDFUNDS(-2)
--------------------------------------------------
INFL | 0.3236 -0.0503 0.0450
| (0.0868) (0.1647) (0.0413)
DUNRATE | 0.0913 0.2414 0.0536
| (0.0469) (0.0891) (0.0223)
DFEDFUNDS | 0.3403 -0.2968 -0.3117
| (0.1857) (0.3526) (0.0883)
VAR Coefficient Matrix of Lag 3
| INFL(-3) DUNRATE(-3) DFEDFUNDS(-3)
--------------------------------------------------
INFL | 0.4272 0.2738 0.0523
| (0.0860) (0.1620) (0.0428)
DUNRATE | -0.0389 0.0552 0.0008
| (0.0465) (0.0876) (0.0232)
DFEDFUNDS | 0.2848 -0.7401 0.0028
| (0.1841) (0.3466) (0.0917)
VAR Coefficient Matrix of Lag 4
| INFL(-4) DUNRATE(-4) DFEDFUNDS(-4)
--------------------------------------------------
INFL | 0.0167 -0.1830 0.0067
| (0.0901) (0.1520) (0.0395)
DUNRATE | 0.0285 -0.1795 0.0088
| (0.0488) (0.0822) (0.0214)
DFEDFUNDS | -0.0690 0.1494 -0.1372
| (0.1928) (0.3253) (0.0845)
Constant Term
INFL | 0.1007
| (0.0832)
DUNRATE | -0.0499
| 0.0450
DFEDFUNDS | -0.4221
| 0.1781
Innovations Covariance Matrix
| INFL DUNRATE DFEDFUNDS
-------------------------------------------
INFL | 0.3028 -0.0217 0.1579
| (0.0321) (0.0124) (0.0499)
DUNRATE | -0.0217 0.0887 -0.1435
| (0.0124) (0.0094) (0.0283)
DFEDFUNDS | 0.1579 -0.1435 1.3872
| (0.0499) (0.0283) (0.1470)
In the 'matrix' display, each table contains the posterior mean of the corresponding coefficient matrix. Under each mean in parentheses the posterior standard deviation.
Consider the 3-D VAR(4) model of Inspect Minnesota Prior Assumptions Among Models. Assume that the parameters follow a semiconjugate prior model.
Load the US macroeconomic data set. Compute the inflation rate, stabilize the unemployment aand federal funds rates, and remove missing values.
load Data_USEconModel seriesnames = ["INFL" "UNRATE" "FEDFUNDS"]; DataTimeTable.INFL = 100*[NaN; price2ret(DataTimeTable.CPIAUCSL)]; DataTimeTable.DUNRATE = [NaN; diff(DataTimeTable.UNRATE)]; DataTimeTable.DFEDFUNDS = [NaN; diff(DataTimeTable.FEDFUNDS)]; seriesnames(2:3) = "D" + seriesnames(2:3); rmDataTimeTable = rmmissing(DataTimeTable);
Create a semiconjugate Bayesian VAR(4) prior model for the three response series. Specify the response variable names, and suppress the estimation display.
numseries = numel(seriesnames); numlags = 4; PriorMdl = bayesvarm(numseries,numlags,'Model','semiconjugate',... 'SeriesNames',seriesnames);
Estimate the posterior distribution. Suppress the estimation display.
PosteriorMdl = estimate(PriorMdl,rmDataTimeTable{:,seriesnames},'Display','off');Because the posterior of a semiconjugate model is analytically intractable, PosteriorMdl is an empiricalbvarm model object storing the draws from the Gibbs sampler.
Summarize the posterior distribution; return the estimation summary.
Summary = summarize(PosteriorMdl);
| Mean Std
-------------------------------
Constant(1) | 0.1830 0.0718
Constant(2) | -0.0808 0.0413
Constant(3) | -0.0161 0.1309
AR{1}(1,1) | 0.2246 0.0650
AR{1}(2,1) | -0.0263 0.0340
AR{1}(3,1) | -0.0263 0.0775
AR{1}(1,2) | -0.0837 0.0824
AR{1}(2,2) | 0.3665 0.0740
AR{1}(3,2) | -0.1283 0.0948
AR{1}(1,3) | 0.1362 0.0323
AR{1}(2,3) | 0.0154 0.0198
AR{1}(3,3) | -0.0538 0.0685
AR{2}(1,1) | 0.2518 0.0700
AR{2}(2,1) | 0.0928 0.0352
AR{2}(3,1) | 0.0373 0.0628
AR{2}(1,2) | -0.0097 0.0632
AR{2}(2,2) | 0.1657 0.0709
AR{2}(3,2) | -0.0254 0.0688
AR{2}(1,3) | 0.0329 0.0308
AR{2}(2,3) | 0.0341 0.0199
AR{2}(3,3) | -0.1451 0.0637
AR{3}(1,1) | 0.2895 0.0665
AR{3}(2,1) | 0.0013 0.0332
AR{3}(3,1) | -0.0036 0.0530
AR{3}(1,2) | 0.0322 0.0538
AR{3}(2,2) | -0.0150 0.0667
AR{3}(3,2) | -0.0369 0.0568
AR{3}(1,3) | 0.0368 0.0298
AR{3}(2,3) | -0.0083 0.0194
AR{3}(3,3) | 0.1516 0.0603
AR{4}(1,1) | 0.0452 0.0644
AR{4}(2,1) | 0.0225 0.0325
AR{4}(3,1) | -0.0097 0.0470
AR{4}(1,2) | -0.0218 0.0468
AR{4}(2,2) | -0.1125 0.0611
AR{4}(3,2) | 0.0013 0.0491
AR{4}(1,3) | 0.0180 0.0273
AR{4}(2,3) | 0.0084 0.0179
AR{4}(3,3) | -0.0815 0.0594
Innovations Covariance Matrix
| INFL DUNRATE DFEDFUNDS
-------------------------------------------
INFL | 0.2983 -0.0219 0.1750
| (0.0307) (0.0121) (0.0500)
DUNRATE | -0.0219 0.0890 -0.1495
| (0.0121) (0.0093) (0.0290)
DFEDFUNDS | 0.1750 -0.1495 1.4730
| (0.0500) (0.0290) (0.1514)
Summary
Summary = struct with fields:
Description: "3-Dimensional VAR(4) Model"
NumEstimatedParameters: 39
Table: [39×2 table]
CoeffMap: [39×1 string]
CoeffMean: [39×1 double]
CoeffStd: [39×1 double]
SigmaMean: [3×3 double]
SigmaStd: [3×3 double]
Summary is a structure array of fields containing posterior estimation information. For example, the CoeffMap field contains a list of the coefficient names. The order of the names corresponds to the order the all coefficient vector inputs and outputs. Display CoeffMap.
Summary.CoeffMap
ans = 39×1 string
"AR{1}(1,1)"
"AR{1}(1,2)"
"AR{1}(1,3)"
"AR{2}(1,1)"
"AR{2}(1,2)"
"AR{2}(1,3)"
"AR{3}(1,1)"
"AR{3}(1,2)"
"AR{3}(1,3)"
"AR{4}(1,1)"
"AR{4}(1,2)"
"AR{4}(1,3)"
"Constant(1)"
"AR{1}(2,1)"
"AR{1}(2,2)"
"AR{1}(2,3)"
"AR{2}(2,1)"
"AR{2}(2,2)"
"AR{2}(2,3)"
"AR{3}(2,1)"
"AR{3}(2,2)"
"AR{3}(2,3)"
"AR{4}(2,1)"
"AR{4}(2,2)"
"AR{4}(2,3)"
"Constant(2)"
"AR{1}(3,1)"
"AR{1}(3,2)"
"AR{1}(3,3)"
"AR{2}(3,1)"
⋮
Input Arguments
Prior or posterior Bayesian VAR model, specified as a model object in this table.
| Model Object | Description |
|---|---|
conjugatebvarm | Dependent, matrix-normal-inverse-Wishart conjugate model returned by bayesvarm, conjugatebvarm, or estimate |
semiconjugatebvarm | Independent, normal-inverse-Wishart semiconjugate prior model returned by bayesvarm or semiconjugatebvarm |
diffusebvarm | Diffuse prior model returned by bayesvarm or diffusebvarm |
empiricalbvarm | Prior or posterior model characterized by random draws from respective distributions, returned by empiricalbvarm or estimate |
Distribution summary display style, specified as a value in this table.
| Value | Description |
|---|---|
'off' | summarize does not print to the command line. |
'table' |
|
'equation' |
|
'matrix' |
|
Data Types: char | string
Output Arguments
Distribution summary statistics, returned as a structure array containing these fields:
| Field | Description | Data type |
|---|---|---|
Description | Model description | string scalar |
NumEstimatedParameters | Number of coefficients | numeric scalar |
Table | Table of coefficient distribution means and standard deviations; each row corresponds to a coefficient and each column corresponds to a statistic | table |
CoeffMap | Coefficient names | string vector |
CoeffMean | Coefficient distribution means | numeric vector, rows correspond to CoeffMap |
CoeffStd | Coefficient distribution standard deviations | numeric vector, rows correspond to CoeffMap |
SigmaMean | Innovations covariance distribution mean matrix | numeric matrix, rows and columns correspond to response equations |
SigmaStd | Innovations covariance distribution standard deviation matrix | numeric matrix, rows and columns correspond to response equations |
More About
A Bayesian VAR model treats all coefficients and the innovations covariance matrix as random variables in the m-dimensional, stationary VARX(p) model. The model has one of the three forms described in this table.
| Model | Equation |
|---|---|
| Reduced-form VAR(p) in difference-equation notation |
|
| Multivariate regression |
|
| Matrix regression |
|
For each time t = 1,...,T:
yt is the m-dimensional observed response vector, where m =
numseries.Φ1,…,Φp are the m-by-m AR coefficient matrices of lags 1 through p, where p =
numlags.c is the m-by-1 vector of model constants if
IncludeConstantistrue.δ is the m-by-1 vector of linear time trend coefficients if
IncludeTrendistrue.Β is the m-by-r matrix of regression coefficients of the r-by-1 vector of observed exogenous predictors xt, where r =
NumPredictors. All predictor variables appear in each equation.which is a 1-by-(mp + r + 2) vector, and Zt is the m-by-m(mp + r + 2) block diagonal matrix
where 0z is a 1-by-(mp + r + 2) vector of zeros.
, which is an (mp + r + 2)-by-m random matrix of the coefficients, and the m(mp + r + 2)-by-1 vector λ = vec(Λ).
εt is an m-by-1 vector of random, serially uncorrelated, multivariate normal innovations with the zero vector for the mean and the m-by-m matrix Σ for the covariance. This assumption implies that the data likelihood is
where f is the m-dimensional multivariate normal density with mean ztΛ and covariance Σ, evaluated at yt.
Before considering the data, you impose a joint prior distribution assumption on (Λ,Σ), which is governed by the distribution π(Λ,Σ). In a Bayesian analysis, the distribution of the parameters is updated with information about the parameters obtained from the data likelihood. The result is the joint posterior distribution π(Λ,Σ|Y,X,Y0), where:
Y is a T-by-m matrix containing the entire response series {yt}, t = 1,…,T.
X is a T-by-m matrix containing the entire exogenous series {xt}, t = 1,…,T.
Y0 is a p-by-m matrix of presample data used to initialize the VAR model for estimation.
Version History
Introduced in R2020a
See Also
Functions
Objects
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleziona un sito web
Seleziona un sito web per visualizzare contenuto tradotto dove disponibile e vedere eventi e offerte locali. In base alla tua area geografica, ti consigliamo di selezionare: .
Puoi anche selezionare un sito web dal seguente elenco:
Come ottenere le migliori prestazioni del sito
Per ottenere le migliori prestazioni del sito, seleziona il sito cinese (in cinese o in inglese). I siti MathWorks per gli altri paesi non sono ottimizzati per essere visitati dalla tua area geografica.
Americhe
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)