varm
Create vector autoregression (VAR) model
Description
The varm
function returns a varm
object specifying the functional form and storing the parameter values of a p-order, stationary, multivariate vector autoregression model (VAR(p)) model.
The key components of a varm
object include the number of time series (response-variable dimensionality) and the order of the multivariate autoregressive polynomial (p) because they completely specify the model structure. Other model components include a regression component to associate the same exogenous predictor variables to each response series, and constant and time trend terms. Given the response-variable dimensionality and p, all coefficient matrices and innovation-distribution parameters are unknown and estimable unless you specify their values.
To estimate models containing unknown parameter values, pass the model and data to
estimate
. To work with an estimated or fully
specified varm
model object, pass it to an object
function. Alternatively, you can create and work with varm
model objects interactively by using Econometric
Modeler.
Creation
Description
creates a VAR(0) model composed of one response series.Mdl
= varm
creates a VAR(Mdl
= varm(numseries
,numlags
)numlags
) model composed of numseries
response series. The maximum nonzero lag is numlags
. All lags have numseries
-by-numseries
coefficient matrices composed of NaN
values.
This shorthand syntax allows for easy model template creation. The model template is suited for unrestricted parameter estimation, that is, estimation without parameter equality constraints. After you create a model, you can alter property values using dot notation.
sets properties or additional options using name-value pair arguments. Enclose each name in quotes. For example, Mdl
= varm(Name,Value
)'Lags',[1 4],'AR',AR
specifies the two autoregressive coefficient matrices in AR
at lags 1
and 4
.
This longhand syntax allows for creating more flexible models. varm
infers the number of series (NumSeries
) and autoregressive polynomial degree (P
) from the properties that you set. Therefore, property values that correspond to the number of series or autoregressive polynomial degree must be consistent with each other.
Input Arguments
Name-Value Arguments
Properties
Object Functions
estimate | Fit vector autoregression (VAR) model to data |
fevd | Generate vector autoregression (VAR) model forecast error variance decomposition (FEVD) |
filter | Filter disturbances through vector autoregression (VAR) model |
forecast | Forecast vector autoregression (VAR) model responses |
gctest | Granger causality and block exogeneity tests for vector autoregression (VAR) models |
infer | Infer vector autoregression model (VAR) innovations |
irf | Generate vector autoregression (VAR) model impulse responses |
simulate | Monte Carlo simulation of vector autoregression (VAR) model |
summarize | Display estimation results of vector autoregression (VAR) model |
vecm | Convert vector autoregression (VAR) model to vector error-correction (VEC) model |