Lookback
Lookback instrument
Description
Create and price a Lookback instrument object for one or
more Lookback instruments using this workflow:
Use
fininstrumentto create aLookbackinstrument object for one or more Lookback instruments.Use
finmodelto specify aBlackScholes,Heston,Bates, orMertonmodel for theLookbackinstrument object.Choose a pricing method.
When using a
BlackScholesmodel, usefinpricerto specify aConzeViswanathan,AssetTree, orGoldmanSosinGattopricing method for one or moreLookbackinstruments.When using a
BlackScholes,Heston,Bates, orMertonmodel, usefinpricerto specify anAssetMonteCarlopricing method for one or moreLookbackinstruments.
For more information on this workflow, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
For more information on the available models and pricing methods for a
Lookback instrument, see Choose Instruments, Models, and Pricers.
Creation
Syntax
Description
creates a LookbackObj = fininstrument(InstrumentType,'Strike',strike_value,'ExerciseDate',exercise_date)Lookback object for one or more Lookback
instruments by specifying InstrumentType and sets the
properties for the
required name-value pair arguments Strike and
ExerciseDate.
The Lookback instrument supports fixed-strike and
floating-strike lookback options. For more information on a
Lookback instrument, see More About.
sets optional properties using
additional name-value pairs in addition to the required arguments in the
previous syntax. For example, LookbackObj = fininstrument(___,Name,Value)LookbackObj =
fininstrument("Lookback",'Strike',100,'ExerciseDate',datetime(2019,1,30),'OptionType',"put",'ExerciseStyle',"European",'Name',"lookback_option")
creates a Lookback put option with an European exercise.
You can specify multiple name-value pair arguments.
Input Arguments
Instrument type, specified as a string with the value of
"Lookback", a character vector with the value of
'Lookback', an
NINST-by-1 string array with
values "Lookback", or an
NINST-by-1 cell array of
character vectors with values of 'Lookback'.
Data Types: char | cell | string
Name-Value Arguments
Specify required
and optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is
the corresponding value. Name-value arguments must appear after other arguments,
but the order of the pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: LookbackObj =
fininstrument("Lookback",'Strike',100,'ExerciseDate',datetime(2019,1,30),'OptionType',"put",'ExerciseStyle',"European",'Name',"lookback_option")
Required Lookback Name-Value Pair Arguments
Option strike price value, specified as the comma-separated pair
consisting of 'Strike' and a scalar nonnegative
numeric value or an NINST-by-1
vector of nonnegative values for a fixed-strike
Lookback option. For a floating-strike
Lookback option, specify
'Strike' as a NaN or an
NINST-by-1 vector of
NaNs.
Note
Use the ConzeViswanathan pricer for a fixed strike
Lookback option and use the GoldmanSosinGatto pricer for a floating strike
Lookback option.
Data Types: double
Option exercise date, specified as the comma-separated pair
consisting of 'ExerciseDate' and a scalar or an
NINST-by-1 vector using a
datetime array, string array, or date character vectors.
Note
For a European option, there is only one
ExerciseDate on the option expiry
date.
To support existing code, Lookback also
accepts serial date numbers as inputs, but they are not recommended.
If you use date character vectors or strings, the format must be
recognizable by datetime because
the ExerciseDate property is stored as a
datetime.
Optional Lookback Name-Value Pair Arguments
Option type, specified as the comma-separated pair consisting of
'OptionType' and a scalar string or character
vector or an NINST-by-1 cell
array of character vectors or string array.
A lookback call option gives the holder the right to buy the underlying asset at the highest price observed during the option's term. This allows the holder to benefit from the highest possible purchase price.
A lookback put option provides the holder with the right to sell the underlying asset at the lowest price observed during the option's term. This allows the holder to take advantage of the lowest possible selling price.
Data Types: char | cell | string
Option exercise style, specified as the comma-separated pair
consisting of 'ExerciseStyle' and a scalar string
or character vector or an
NINST-by-1 cell array of
character vectors or string array.
Lookback options can be either European-style or American-style, depending on when they can be exercised:
European Lookback Option — This type of lookback option can only be exercised at the expiration date.
American Lookback Option — An American-style lookback option allows the holder to exercise the option at any time during the option's term.
Data Types: string | cell | char
Maximum or minimum underlying asset price, specified as the
comma-separated pair consisting of 'AssetMinMax'
and a scalar numeric or an
NINST-by-1 numeric
vector.
Data Types: double
User-defined name for one of more instruments, specified as the
comma-separated pair consisting of 'Name' and a
scalar string or character vector or an
NINST-by-1 cell array of
character vectors or string array.
Data Types: char | cell | string
Output Arguments
Lookback instrument, returned as a Lookback
object.
Properties
Option strike price value, returned as a scalar nonnegative numeric or an
NINST-by-1 vector of nonnegative
values.
Data Types: double
Option exercise date, returned as a datetime or an
NINST-by-1 vector of
datetimes.
Data Types: datetime
Option type, returned as a scalar string or an
NINST-by-1 string array with the
values of "call" or "put".
Data Types: string
Option exercise style, returned as a scalar string or an
NINST-by-1 string array with
values of "European" or "American".
Data Types: string
Maximum or minimum underlying asset price, returned as a scalar numeric or
an NINST-by-1 numeric vector.
Data Types: double
User-defined name for the instrument, returned as a string or an
NINST-by-1 string array.
Data Types: string
Examples
This example shows the workflow to price a LookBack instrument when you use a BlackScholes model and a ConzeViswanathan pricing method.
Create Lookback Instrument Object
Use fininstrument to create a Lookback instrument object.
LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")
LookbackOpt =
Lookback with properties:
OptionType: "put"
Strike: 105
AssetMinMax: NaN
ExerciseStyle: "european"
ExerciseDate: 15-Sep-2022
Name: "lookback_option"
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)
BlackScholesModel =
BlackScholes with properties:
Volatility: 0.2000
Correlation: 1
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create ConzeViswanathan Pricer Object
Use finpricer to create a ConzeViswanathan pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("analytic","Model",BlackScholesModel,"DiscountCurve",myRC,"SpotPrice",100,"DividendValue",0.25,"DividendType","continuous","PricingMethod","ConzeViswanathan")
outPricer =
ConzeViswanathan with properties:
DiscountCurve: [1×1 ratecurve]
Model: [1×1 finmodel.BlackScholes]
SpotPrice: 100
DividendValue: 0.2500
DividendType: "continuous"
Price Lookback Instrument
Use price to compute the price and sensitivities for the Lookback instrument.
[Price, outPR] = price(outPricer,LookbackOpt,["all"])Price = 57.8786
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: []
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Vega Theta Rho
______ ________ _____ ________ ______ _______ _______
57.879 -0.33404 0 -0.57714 32.587 -5.1863 -350.41
This example shows the workflow to price multiple LookBack instrument when you use a BlackScholes model and a ConzeViswanathan pricing method.
Create Lookback Instrument Object
Use fininstrument to create a Lookback instrument object for three Lookback instruments.
LookbackOpt = fininstrument("Lookback",'Strike',[105 ; 120; 140],'ExerciseDate',datetime([2022,9,15 ; 2022,10,15 ; 2022,11,15]),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")
LookbackOpt=3×1 Lookback array with properties:
OptionType
Strike
AssetMinMax
ExerciseStyle
ExerciseDate
Name
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)
BlackScholesModel =
BlackScholes with properties:
Volatility: 0.2000
Correlation: 1
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create ConzeViswanathan Pricer Object
Use finpricer to create a ConzeViswanathan pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("analytic","Model",BlackScholesModel,"DiscountCurve",myRC,"SpotPrice",100,"DividendValue",0.25,"DividendType","continuous","PricingMethod","ConzeViswanathan")
outPricer =
ConzeViswanathan with properties:
DiscountCurve: [1×1 ratecurve]
Model: [1×1 finmodel.BlackScholes]
SpotPrice: 100
DividendValue: 0.2500
DividendType: "continuous"
Price Lookback Instruments
Use price to compute the prices and sensitivities for the Lookback instruments.
[Price, outPR] = price(outPricer,LookbackOpt,["all"])Price = 3×1
57.8786
71.3008
88.9673
outPR=3×1 priceresult array with properties:
Results
PricerData
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Vega Theta Rho
______ ________ _____ ________ ______ _______ _______
57.879 -0.33404 0 -0.57714 32.587 -5.1863 -350.41
ans=1×7 table
Price Delta Gamma Lambda Vega Theta Rho
______ ________ __________ ________ ______ _______ _______
71.301 -0.32722 2.8422e-06 -0.45894 31.997 -4.5677 -410.15
ans=1×7 table
Price Delta Gamma Lambda Vega Theta Rho
______ ________ __________ ________ ______ _______ _______
88.967 -0.32033 1.4211e-06 -0.36005 31.395 -3.7989 -489.96
This example shows the workflow to price a LookBack instrument when you use an BlackScholes model and an AssetTree pricing method using a Leisen-Reimer (LR) binomial tree.
Create Lookback Instrument Object
Use fininstrument to create a Lookback instrument object.
LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")
LookbackOpt =
Lookback with properties:
OptionType: "put"
Strike: 105
AssetMinMax: NaN
ExerciseStyle: "european"
ExerciseDate: 15-Sep-2022
Name: "lookback_option"
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)
BlackScholesModel =
BlackScholes with properties:
Volatility: 0.2000
Correlation: 1
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create AssetTree Pricer Object
Use finpricer to create an AssetTree pricer object for a LR equity tree and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
NumPeriods = 15; LRPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',150,'PricingMethod',"LeisenReimer",'Maturity',datetime(2022,9,15),'NumPeriods',NumPeriods)
LRPricer =
LRTree with properties:
InversionMethod: PP1
Strike: 150
Tree: [1×1 struct]
NumPeriods: 15
Model: [1×1 finmodel.BlackScholes]
DiscountCurve: [1×1 ratecurve]
SpotPrice: 150
DividendType: "continuous"
DividendValue: 0
TreeDates: [21-Dec-2018 09:36:00 28-Mar-2019 19:12:00 04-Jul-2019 04:48:00 09-Oct-2019 14:24:00 15-Jan-2020 00:00:00 21-Apr-2020 09:36:00 27-Jul-2020 19:12:00 02-Nov-2020 04:48:00 … ] (1×15 datetime)
LRPricer.Tree
ans = struct with fields:
Probs: [2×15 double]
ATree: {1×16 cell}
dObs: [15-Sep-2018 00:00:00 21-Dec-2018 09:36:00 28-Mar-2019 19:12:00 04-Jul-2019 04:48:00 09-Oct-2019 14:24:00 15-Jan-2020 00:00:00 21-Apr-2020 09:36:00 27-Jul-2020 19:12:00 02-Nov-2020 04:48:00 … ] (1×16 datetime)
tObs: [0 0.2667 0.5333 0.8000 1.0667 1.3333 1.6000 1.8667 2.1333 2.4000 2.6667 2.9333 3.2000 3.4667 3.7333 4]
Price Lookback Instrument
Use price to compute the price and sensitivities for the Lookback instrument.
[Price, outPR] = price(LRPricer,LookbackOpt,["all"])Price = 3.9412
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: []
outPR.Results
ans=1×7 table
Price Delta Gamma Vega Lambda Rho Theta
______ ________ _________ ______ _______ _______ _______
3.9412 -0.13312 -0.011131 67.684 -5.0757 -73.857 -1.0383
This example shows the workflow to price a LookBack instrument when you use an BlackScholes model and an AssetTree pricing method using a Standard Trinomial (STT) tree.
Create Lookback Instrument Object
Use fininstrument to create a Lookback instrument object.
LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")
LookbackOpt =
Lookback with properties:
OptionType: "put"
Strike: 105
AssetMinMax: NaN
ExerciseStyle: "european"
ExerciseDate: 15-Sep-2022
Name: "lookback_option"
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)
BlackScholesModel =
BlackScholes with properties:
Volatility: 0.2000
Correlation: 1
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create AssetTree Pricer Object
Use finpricer to create an AssetTree pricer object for a Standard Trinomial (STT) equity tree and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
NumPeriods = 15; STTPricer = finpricer("AssetTree",'DiscountCurve',myRC,'Model',BlackScholesModel,'SpotPrice',150,'PricingMethod',"StandardTrinomial",'Maturity',datetime(2022,9,15),'NumPeriods',NumPeriods)
STTPricer =
STTree with properties:
Tree: [1×1 struct]
NumPeriods: 15
Model: [1×1 finmodel.BlackScholes]
DiscountCurve: [1×1 ratecurve]
SpotPrice: 150
DividendType: "continuous"
DividendValue: 0
TreeDates: [21-Dec-2018 09:36:00 28-Mar-2019 19:12:00 04-Jul-2019 04:48:00 09-Oct-2019 14:24:00 15-Jan-2020 00:00:00 21-Apr-2020 09:36:00 27-Jul-2020 19:12:00 02-Nov-2020 04:48:00 … ] (1×15 datetime)
STTPricer.Tree
ans = struct with fields:
ATree: {1×16 cell}
Probs: {[3×1 double] [3×3 double] [3×5 double] [3×7 double] [3×9 double] [3×11 double] [3×13 double] [3×15 double] [3×17 double] [3×19 double] [3×21 double] [3×23 double] [3×25 double] [3×27 double] [3×29 double]}
dObs: [15-Sep-2018 00:00:00 21-Dec-2018 09:36:00 28-Mar-2019 19:12:00 04-Jul-2019 04:48:00 09-Oct-2019 14:24:00 15-Jan-2020 00:00:00 21-Apr-2020 09:36:00 27-Jul-2020 19:12:00 02-Nov-2020 04:48:00 … ] (1×16 datetime)
tObs: [0 0.2667 0.5333 0.8000 1.0667 1.3333 1.6000 1.8667 2.1333 2.4000 2.6667 2.9333 3.2000 3.4667 3.7333 4]
Price Lookback Instrument
Use price to compute the price and sensitivities for the Lookback instrument.
[Price, outPR] = price(STTPricer,LookbackOpt,["all"])Price = 3.3392
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: []
outPR.Results
ans=1×7 table
Price Delta Gamma Vega Lambda Rho Theta
______ ________ ___________ ______ _______ _______ _______
3.3392 -0.15942 -1.0596e-11 63.886 -7.1613 -68.263 -1.0254
This example shows the workflow to price a LookBack instrument when you use a BlackScholes model and an AssetMonetCarlo pricing method.
Create Lookback Instrument Object
Use fininstrument to create a Lookback instrument object.
LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")
LookbackOpt =
Lookback with properties:
OptionType: "put"
Strike: 105
AssetMinMax: NaN
ExerciseStyle: "european"
ExerciseDate: 15-Sep-2022
Name: "lookback_option"
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)
BlackScholesModel =
BlackScholes with properties:
Volatility: 0.2000
Correlation: 1
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create AssetMonteCarlo Pricer Object
Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BlackScholesModel,'SpotPrice',200,'simulationDates',datetime(2022,9,15))
outPricer =
GBMMonteCarlo with properties:
DiscountCurve: [1×1 ratecurve]
SpotPrice: 200
SimulationDates: 15-Sep-2022
NumTrials: 1000
RandomNumbers: []
Model: [1×1 finmodel.BlackScholes]
DividendType: "continuous"
DividendValue: 0
MonteCarloMethod: "standard"
BrownianMotionMethod: "standard"
Price Lookback Instrument
Use price to compute the price and sensitivities for the Lookback instrument.
[Price, outPR] = price(outPricer,LookbackOpt,["all"])Price = 1.8553
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Rho Theta Vega
______ _________ __________ _______ _______ ________ ______
1.8553 -0.040442 0.00062792 -4.3596 -39.426 -0.71345 42.311
This example shows the workflow to price a LookBack instrument when you use a BlackScholes model and an AssetMonetCarlo pricing method with quasi-Monte Carlo simulation.
Create Lookback Instrument Object
Use fininstrument to create a Lookback instrument object.
LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")
LookbackOpt =
Lookback with properties:
OptionType: "put"
Strike: 105
AssetMinMax: NaN
ExerciseStyle: "european"
ExerciseDate: 15-Sep-2022
Name: "lookback_option"
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",'Volatility',0.2)
BlackScholesModel =
BlackScholes with properties:
Volatility: 0.2000
Correlation: 1
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create AssetMonteCarlo Pricer Object
Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value argument and use the name-value arguments for MonteCarloMethod and BrownianMotionMethod.
outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BlackScholesModel,'SpotPrice',200,'simulationDates',datetime(2022,9,15),'NumTrials',1e3, ... 'MonteCarloMethod',"quasi",'BrownianMotionMethod',"brownian-bridge")
outPricer =
GBMMonteCarlo with properties:
DiscountCurve: [1×1 ratecurve]
SpotPrice: 200
SimulationDates: 15-Sep-2022
NumTrials: 1000
RandomNumbers: []
Model: [1×1 finmodel.BlackScholes]
DividendType: "continuous"
DividendValue: 0
MonteCarloMethod: "quasi"
BrownianMotionMethod: "brownian-bridge"
Price Lookback Instrument
Use price to compute the price and sensitivities for the Lookback instrument.
[Price, outPR] = price(outPricer,LookbackOpt,"all")Price = 1.8493
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Rho Theta Vega
______ _________ _________ _______ _______ ________ ______
1.8493 -0.045633 0.0011617 -4.9352 -43.807 -0.79718 47.192
This example shows the workflow to price a LookBack instrument when you use a Bates model and an AssetMonetCarlo pricing method.
Create Lookback Instrument Object
Use fininstrument to create a Lookback instrument object.
LookbackOpt = fininstrument("Lookback",'Strike',105,'ExerciseDate',datetime(2022,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"lookback_option")
LookbackOpt =
Lookback with properties:
OptionType: "put"
Strike: 105
AssetMinMax: NaN
ExerciseStyle: "european"
ExerciseDate: 15-Sep-2022
Name: "lookback_option"
Create Bates Model Object
Use finmodel to create a Bates model object.
BatesModel = finmodel("Bates",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9,'MeanJ',0.11,'JumpVol',.023,'JumpFreq',0.02)
BatesModel =
Bates with properties:
V0: 0.0320
ThetaV: 0.1000
Kappa: 0.0030
SigmaV: 0.2000
RhoSV: 0.9000
MeanJ: 0.1100
JumpVol: 0.0230
JumpFreq: 0.0200
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create AssetMonteCarlo Pricer Object
Use finpricer to create an AssetMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("AssetMonteCarlo",'DiscountCurve',myRC,"Model",BatesModel,'SpotPrice',100,'simulationDates',datetime(2022,9,15))
outPricer =
BatesMonteCarlo with properties:
DiscountCurve: [1×1 ratecurve]
SpotPrice: 100
SimulationDates: 15-Sep-2022
NumTrials: 1000
RandomNumbers: []
Model: [1×1 finmodel.Bates]
DividendType: "continuous"
DividendValue: 0
MonteCarloMethod: "standard"
BrownianMotionMethod: "standard"
Price Lookback Instrument
Use price to compute the price and sensitivities for the Lookback instrument.
[Price, outPR] = price(outPricer,LookbackOpt,["all"])Price = 7.2577
outPR =
priceresult with properties:
Results: [1×8 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×8 table
Price Delta Gamma Lambda Rho Theta Vega VegaLT
______ ________ _____ _______ _______ _________ ______ _______
7.2577 -0.84025 0 -11.577 -29.025 -0.027666 30.748 0.68416
More About
A lookback option is a path-dependent option based on the maximum or minimum value the underlying asset achieves during the entire life of the option.
A lookback option's value is derived from an underlying asset, such as a stock, index, or currency pair. The option holder has the right to buy (call option) or sell (put option) the underlying asset at the most favorable price observed during the specified period.
Financial Instruments Toolbox™ software supports two types of lookback options: fixed and floating. Fixed lookback options have a specified strike price, while floating lookback options have a strike price determined by the asset path. For more information, see Lookback Option.
Version History
Introduced in R2020aAlthough Lookback supports serial date numbers,
datetime values are recommended instead. The
datetime data type provides flexible date and time
formats, storage out to nanosecond precision, and properties to account for time
zones and daylight saving time.
To convert serial date numbers or text to datetime values, use the datetime function. For example:
t = datetime(738427.656845093,"ConvertFrom","datenum"); y = year(t)
y =
2021
There are no plans to remove support for serial date number inputs.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleziona un sito web
Seleziona un sito web per visualizzare contenuto tradotto dove disponibile e vedere eventi e offerte locali. In base alla tua area geografica, ti consigliamo di selezionare: .
Puoi anche selezionare un sito web dal seguente elenco:
Come ottenere le migliori prestazioni del sito
Per ottenere le migliori prestazioni del sito, seleziona il sito cinese (in cinese o in inglese). I siti MathWorks per gli altri paesi non sono ottimizzati per essere visitati dalla tua area geografica.
Americhe
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)