getcov
Parameter covariance of identified model
Description
returns the raw covariance
of the parameters of an identified model.cov_data
=
getcov(sys
)
If
sys
is a single model, thencov_data
is an np-by-np matrix. np is the number of parameters ofsys
.If
sys
is a model array, thencov_data
is a cell array of size equal to the array size ofsys
.cov_data(i,j,k,...)
contains the covariance data forsys(:,:,i,j,k,...)
.
Examples
Obtain Raw Parameter Covariance for Identified Model
Obtain the identified model.
load iddata1 z1 sys = tfest(z1,2);
Get the raw parameter covariance for the model.
cov_data = getcov(sys)
cov_data = 5×5
1.2131 -4.3949 -0.0309 -0.5531 0
-4.3949 115.0838 1.8598 10.6660 0
-0.0309 1.8598 0.0636 0.1672 0
-0.5531 10.6660 0.1672 1.2433 0
0 0 0 0 0
cov_data
contains the covariance matrix for the parameter vector [sys.Numerator,sys.Denominator(2:end),sys.IODelay]
.
sys.Denominator(1)
is fixed to 1
and not treated as a parameter. The covariance matrix entries corresponding to the delay parameter (fifth row and column) are zero because the delay was not estimated.
Obtain Raw Parameter Covariance for Identified Model Array
Obtain the identified model array.
load iddata1 z1; sys1 = tfest(z1,2); sys2 = tfest(z1,3); sysarr = stack(1,sys1,sys2);
sysarr
is a 2-by-1 array of continuous-time, identified transfer functions.
Get the raw parameter covariance for the models in the array.
cov_data = getcov(sysarr)
cov_data=2×1 cell array
{5x5 double}
{7x7 double}
cov_data
is a 2-by-1 cell array. cov_data{1}
and cov_data{2}
are the raw parameter covariance matrices for sys1
and sys2
.
Obtain Raw Covariance of Estimated Parameters of Identified Model
Load the estimation data.
load iddata1 z1 z1.y = cumsum(z1.y);
Estimate the model.
init_sys = idtf([100 1500],[1 10 10 0]); init_sys.Structure.Numerator.Minimum = eps; init_sys.Structure.Denominator.Minimum = eps; init_sys.Structure.Denominator.Free(end) = false; opt = tfestOptions('SearchMethod','lm'); sys = tfest(z1,init_sys,opt);
sys
is an idtf
model with six parameters, four of which are estimated.
Get the covariance matrix for the estimated parameters.
cov_type = 'value'; cov_data = getcov(sys,cov_type,'free')
cov_data = 4×4
105 ×
0.0269 -0.1237 -0.0001 -0.0017
-0.1237 1.0221 0.0016 0.0133
-0.0001 0.0016 0.0000 0.0000
-0.0017 0.0133 0.0000 0.0002
cov_data
is a 4x4
covariance matrix, with entries corresponding to the four estimated parameters.
Obtain Factored Parameter Covariance for Identified Model
Obtain the identified model.
load iddata1 z1 sys = tfest(z1,2);
Get the factored parameter covariance for the model.
cov_type = 'factors';
cov_data = getcov(sys,cov_type);
Obtain Factored Parameter Covariance for Identified Model Array
Obtain the identified model array.
load iddata1 z1 sys1 = tfest(z1,2); sys2 = tfest(z1,3); sysarr = stack(1,sys1,sys2);
sysarr
is a 2-by-1 array of continuous-time, identified transfer functions.
Get the factored parameter covariance for the models in the array.
cov_type = 'factors';
cov_data = getcov(sysarr,cov_type)
cov_data=2×1 struct array with fields:
R
T
Free
cov_data
is a 2-by-1 structure array. cov_data(1)
and cov_data(2)
are the factored covariance structures for sys1
and sys2
.
Obtain Factored Covariance of Estimated Parameters of Identified Model
Load the estimation data.
load iddata1 z1 z1.y = cumsum(z1.y);
Estimate the model.
init_sys = idtf([100 1500],[1 10 10 0]); init_sys.Structure.Numerator.Minimum = eps; init_sys.Structure.Denominator.Minimum = eps; init_sys.Structure.Denominator.Free(end) = false; opt = tfestOptions('SearchMethod','lm'); sys = tfest(z1,init_sys,opt);
sys
, an idtf
model, has six parameters, four of which are estimated.
Get the factored covariance for the estimated parameters.
cov_type = 'factors'; cov_data = getcov(sys,cov_type,'free');
Input Arguments
sys
— Identified model
idtf
, idss
, idgrey
, idpoly
, idproc
, idnlarx
, idnlhw
,
or idnlgrey
object | model array
cov_type
— Covariance type
'value'
(default) | 'factors'
Covariance return type, specified as either 'value'
or 'factors'
.
If
cov_type
is'value'
, thencov_data
is returned as a matrix (raw covariance).If
cov_type
is'factors'
, thencov_data
is returned as a structure containing the factors of the covariance matrix.Use this option for fetching the covariance data if the covariance matrix contains nonfinite values, is not positive definite, or is ill conditioned. You can calculate the response uncertainty using the covariance factors instead of the numerically disadvantageous covariance matrix.
This option does not offer a numerical advantage in the following cases:
Data Types: char
Output Arguments
cov_data
— Parameter covariance of sys
matrix or cell array of matrices | structure or cell array of structures
Parameter covariance of sys
, returned as
a matrix, cell array of matrices, structure, or cell array of structures. cov_data
is []
for idnlarx
and idnlhw
models.
If
sys
is a single model andcov_type
is'value'
, thencov_data
is an np-by-np matrix. np is the number of parameters ofsys
.The value of the nonzero elements of this matrix is equal to
sys.Report.Parameters.FreeParCovariance
whensys
is obtained via estimation. The row and column entries that correspond to fixed parameters are zero.If
sys
is a single model andcov_type
is'factors'
, thencov_data
is a structure with fields:R
— Usually an upper triangular matrix.T
— Transformation matrix.Free
— Logical vector of length np, indicating if a model parameter is free (estimated) or not. np is the number of parameters ofsys
.
To obtain the covariance matrix using the factored form, enter:
Free = cov_factored.Free; T = cov_factored.T; R = cov_factored.R; np = nparams(sys); cov_matrix = zeros(np); cov_matrix(Free, Free) = T*inv(R'*R)*T';
For numerical accuracy, calculate
T*inv(R'*R)*T'
asX*X'
, whereX = T/R
.If
sys
is a model array, thencov_data
is a cell array of size equal to the array size ofsys
.cov_data(i,j,k,...)
contains the covariance data forsys(:,:,i,j,k,...)
.
Version History
Introduced in R2012a
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)