Main Content




J = imdilate(I,SE) dilates the grayscale, binary, or packed binary image I, returning the dilated image, J. SE is a structuring element object or array of structuring element objects, returned by the strel or offsetstrel functions.

J = imdilate(I,nhood) dilates the image I, where nhood is a matrix of 0s and 1s that specifies the structuring element neighborhood. imdilate determines the center element of the neighborhood by floor((size(nhood)+1)/2).

This syntax is equivalent to imdilate(I,strel(nhood)).

J = imdilate(___,packopt) specifies whether I is a packed binary image.


J = imdilate(___,shape) specifies the size of the output image.


collapse all

Read a binary image into the workspace.

BW = imread('text.png');

Create a vertical line shaped structuring element.

se = strel('line',11,90);

Dilate the image with a vertical line structuring element and compare the results.

BW2 = imdilate(BW,se);
imshow(BW), title('Original')

Figure contains an axes. The axes with title Original contains an object of type image.

figure, imshow(BW2), title('Dilated')

Figure contains an axes. The axes with title Dilated contains an object of type image.

Read a grayscale image into the workspace.

originalI = imread('cameraman.tif');

Create a nonflat ball-shaped structuring element.

se = offsetstrel('ball',5,5);

Dilate the image.

dilatedI = imdilate(originalI,se);

Display the original image and the dilated image.


Figure contains an axes. The axes contains an object of type image.

Create two flat, line-shaped structuring elements, one at 0 degrees and the other at 90 degrees.

se1 = strel('line',3,0)
se1 = 
strel is a line shaped structuring element with properties:

      Neighborhood: [1 1 1]
    Dimensionality: 2

se2 = strel('line',3,90)
se2 = 
strel is a line shaped structuring element with properties:

      Neighborhood: [3x1 logical]
    Dimensionality: 2

Dilate the scalar value 1 with both structuring elements in sequence, using the 'full' option.

composition = imdilate(1,[se1 se2],'full')
composition = 3×3

     1     1     1
     1     1     1
     1     1     1

Create a logical 3D volume with two points.

BW = false(100,100,100);
BW(25,25,25) = true;
BW(75,75,75) = true;

Dilate the 3D volume using a spherical structuring element.

se = strel('sphere',25);
dilatedBW = imdilate(BW,se);

Visualize the dilated image volume.

isosurface(dilatedBW, 0.5)

Figure contains an axes. The axes contains an object of type patch.

Input Arguments

collapse all

Input image, specified as a grayscale image, binary image, or packed binary image of any dimension.

Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | logical

Structuring element, specified as a scalar strel object or offsetstrel object. SE can also be an array of strel object or offsetstrel objects, in which case imdilate performs multiple dilations of the input image, using each structuring element in succession.

imdilate performs grayscale dilation for all images except images of data type logical. In this case, the structuring element must be flat and imdilate performs binary dilation.

Structuring element neighborhood, specified as a matrix of 0s and 1s.

Example: [0 1 0; 1 1 1; 0 1 0]

Indicator of packed binary image, specified as one of the following.




I is treated as a normal array.


I is treated as a packed binary image as produced by bwpack. I must be a 2-D uint32 array and SE must be a flat 2-D structuring element. The value of shape must be 'same'.

Data Types: char | string

Size of the output image, specified as one of the following.




The output image is the same size as the input image. If the value of packopt is 'ispacked', then shape must be 'same'.


Compute the full dilation.

Data Types: char | string

Output Arguments

collapse all

Dilated image, returned as a grayscale image, binary image, or packed binary image. If the input image I is packed binary, then J is also packed binary. J has the same class as I.

More About

collapse all

Binary Dilation

The binary dilation of A by B, denoted AB, is defined as the set operation:


where B^ is the reflection of the structuring element B. In other words, it is the set of pixel locations z, where the reflected structuring element overlaps with foreground pixels in A when translated to z. Note that some applications use a definition of dilation in which the structuring element is not reflected.

For more information about binary dilation, see [1].

Grayscale Dilation

In the general form of grayscale dilation, the structuring element has a height. The grayscale dilation of A(x, y) by B(x, y) is defined as:


where DB is the domain of the structuring element B and A(x, y) is assumed to be –∞ outside the domain of the image. To create a structuring element with nonzero height values, use the syntax strel(nhood,height), where height gives the height values and nhood corresponds to the structuring element domain, DB.

Most commonly, grayscale dilation is performed with a flat structuring element (B(x,y) = 0). Grayscale dilation using such a structuring element is equivalent to a local-maximum operator:


All of the strel syntaxes except for strel(nhood,height), strel('arbitrary',nhood,height), and strel('ball',...) produce flat structuring elements.


imdilate automatically takes advantage of the decomposition of a structuring element object (if it exists). Also, when performing binary dilation with a structuring element object that has a decomposition, imdilate automatically uses binary image packing to speed up the dilation.

Dilation using bit packing is described in [3].


[1] Gonzalez, R. C., R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, Gatesmark Publishing, 2009.

[2] Haralick, R. M., and L. G. Shapiro, Computer and Robot Vision, Vol. I, Addison-Wesley, 1992, pp. 158-205.

[3] van den Boomgard, R, and R. van Balen, "Methods for Fast Morphological Image Transforms Using Bitmapped Images," Computer Vision, Graphics, and Image Processing: Graphical Models and Image Processing, Vol. 54, Number 3, pp. 254-258, May 1992.

Extended Capabilities

See Also



Introduced before R2006a