Main Content

jsondecode

Decode JSON-formatted text

Description

value = jsondecode(txt) parses JSON text.

example

Examples

collapse all

Display the JSON-formatted string ["one", "two", "three"].

jsondecode('["one", "two", "three"]')
ans = 3x1 cell
    {'one'  }
    {'two'  }
    {'three'}

Input Arguments

collapse all

JSON-formatted text, specified as a string scalar or character vector. Invalid names in the JSON text are made valid with matlab.lang.makeValidName.

Example: '{"IDs":[116,943,234,38793]}'

Data Types: char

Output Arguments

collapse all

MATLAB data returned as decoded JSON-formatted text. value depends on the data encoded in txt.

Limitations

  • If you decode, then encode a value, MATLAB does not guarantee that the result is identical to the original string. In particular, field names in JSON objects that are not valid MATLAB identifiers might be altered by the makeValidName function.

Algorithms

JSON supports fewer data types than MATLAB. jsondecode converts JSON data types to the MATLAB data types in this table. jsondecode converts JSON object field names to MATLAB structure field names.

JSON Data Type

MATLAB Data Type

null, in numeric arrays

NaN

null, in nonnumeric arrays

Empty double []

Boolean

Scalar logical

Number

Scalar double

String

Character vector

Object (In JSON, object means an unordered set of name-value pairs.)

Scalar structure (Names are made valid using matlab.lang.makeValidName.)

Array, when elements are of different data types

Cell array

Array of boolean

Array of logical

Array of numbers

Array of double

Array of strings

Cell array of character vectors

Array of objects — Same field names

Structure array

Array of objects — Different field names

Cell array of scalar structures

Extended Capabilities

Thread-Based Environment
Run code in the background using MATLAB® backgroundPool or accelerate code with Parallel Computing Toolbox™ ThreadPool.

Version History

Introduced in R2016b