unstack
Unstack data from one variable into multiple variables
Description
converts the table or timetable, U
= unstack(S
,vars
,ivar
)S
, to an equivalent table or
timetable, U
, that is unstacked. vars
specifies variables in S
, each of which is unstacked into
multiple variables in U
. In general, U
contains more variables, but fewer rows, than S
.
The ivar
input argument specifies the variable in
S
that unstack
uses as an indicator
variable. The values in ivar
determine which variables in
U
contain elements taken from vars
after
unstacking.
The unstack
function treats the remaining variables
differently in tables and timetables.
If
S
is a table, thenunstack
treats the remaining variables as grouping variables. Each unique combination of values in the grouping variables identifies a group of rows inS
that is unstacked into one row ofU
.If
S
is a timetable, thenunstack
discards the remaining variables. However,unstack
treats the vector of row times as a grouping variable.
You cannot unstack the row names of a table, or the row times of a timetable, or
specify either as the indicator variable. You can specify row names or row times as
constant variables with the 'ConstantVariables'
argument.
converts the table or timetable U
= unstack(S
,vars
,ivar
,Name,Value
)S
with additional options
specified by one or more Name,Value
pair arguments.
For example, you can specify how unstack
converts variables
from S
to variables in U
.
Examples
Separate One Variable into Three Variables
Create a table indicating the amount of snowfall in various towns for various storms. Specify the towns using a categorical
array, since there are a fixed set of town names in this table.
Storm = [3;3;1;3;1;1;4;2;4;2;4;2]; Town = categorical({'Natick';'Worcester';'Natick';'Boston';'Boston';'Worcester';... 'Boston';'Natick';'Worcester';'Worcester';'Natick';'Boston'}); Snowfall = [0;3;5;5;9;10;12;13;15;16;17;21]; S = table(Storm,Town,Snowfall)
S=12×3 table
Storm Town Snowfall
_____ _________ ________
3 Natick 0
3 Worcester 3
1 Natick 5
3 Boston 5
1 Boston 9
1 Worcester 10
4 Boston 12
2 Natick 13
4 Worcester 15
2 Worcester 16
4 Natick 17
2 Boston 21
S
contains three snowfall entries for each storm, one for each town. S
is in stacked format, with Town
having the categorical
data type. Table variables that have the categorical
data type are useful indicator variables and grouping variables for unstacking.
Separate the variable Snowfall
into three variables, one for each town specified in the variable, Town
. The output table, U
, is in unstacked format.
U = unstack(S,'Snowfall','Town')
U=4×4 table
Storm Boston Natick Worcester
_____ ______ ______ _________
3 5 0 3
1 9 5 10
4 12 17 15
2 21 13 16
Each row in U
contains data from rows in S
that have the same value in the grouping variable, Storm
. The order of the unique values in Storm
determines the order of the data in U
.
Apply Aggregation Function to Each Group
Unstack data and apply an aggregation function to multiple rows in the same group that have the same values in the indicator variable.
Create a timetable containing data on the price of two stocks over two days. To specify the row times, use datetime
values. Specify the names of the stocks using a categorical
array since this timetable has a fixed set of stock names.
Date = [repmat(datetime('2008-04-12'),6,1);... repmat(datetime('2008-04-13'),5,1)]; Stock = categorical({'Stock1';'Stock2';'Stock1';'Stock2';... 'Stock2';'Stock2';'Stock1';'Stock2';... 'Stock2';'Stock1';'Stock2'}); Price = [60.35;27.68;64.19;25.47;28.11;27.98;... 63.85;27.55;26.43;65.73;25.94]; S = timetable(Date,Stock,Price)
S=11×2 timetable
Date Stock Price
___________ ______ _____
12-Apr-2008 Stock1 60.35
12-Apr-2008 Stock2 27.68
12-Apr-2008 Stock1 64.19
12-Apr-2008 Stock2 25.47
12-Apr-2008 Stock2 28.11
12-Apr-2008 Stock2 27.98
13-Apr-2008 Stock1 63.85
13-Apr-2008 Stock2 27.55
13-Apr-2008 Stock2 26.43
13-Apr-2008 Stock1 65.73
13-Apr-2008 Stock2 25.94
S
contains two prices for Stock1
during the first day and four prices for Stock2
during the first day.
Create a timetable containing separate variables for each stock and one row for each day. Use Date
(the vector of row times) as the grouping variable and apply the aggregation function, @mean
, to the numeric values from the variable, Price
, for each group.
[U,is] = unstack(S,'Price','Stock',... 'AggregationFunction',@mean)
U=2×2 timetable
Date Stock1 Stock2
___________ ______ ______
12-Apr-2008 62.27 27.31
13-Apr-2008 64.79 26.64
is = 2×1
1
7
U
contains the average price for each stock grouped by date.
is
identifies the index of the first value for each group of rows in S
. The first value for the group with the date April 13, 2008, is in the seventh row of S
.
Input Arguments
S
— Input table
table | timetable
Input table, specified as a table or a timetable. S
must contain data variables to unstack, vars
, and an
indicator variable, ivar
. The remaining variables in
S
can be treated as either grouping variables or
constant variables.
vars
— Variables in S
to unstack
positive integer | vector of positive integers | string array | character vector | cell array of character vectors | pattern
scalar | logical vector
Variables in S
to unstack, specified as a positive
integer, vector of positive integers, string array, character vector, cell
array of character vectors, pattern
scalar, or logical vector.
ivar
— Indicator variable in S
positive integer | character vector | string scalar
Indicator variable in S
, specified as a positive
integer, a character vector, or a string scalar. The values in the variable
specified by ivar
indicate which variables in
U
contain elements taken from the variables specified
by vars
.
The variable specified by ivar
can be a numeric vector,
logical vector, character array, cell array of character vectors, string
array, or categorical vector.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: 'AggregationFunction',@mean
applies the aggregation
function mean
to the values in
vars
.
GroupingVariables
— Grouping variables in S
that define groups of rows
positive integer | vector of positive integers | string array | character vector | cell array of character vectors | pattern
scalar | logical vector
Grouping variables in S
that define groups of rows,
specified as the comma-separated pair consisting of
'GroupingVariables'
and a positive integer,
vector of positive integers, string array, character vector, cell array
of character vectors, pattern
scalar, or logical vector. Each group of rows in
S
becomes one row in U
.
If the grouping variables have missing values, then
unstack
excludes the corresponding rows of the
input table. It groups data and unstacks results without data from those
rows. Missing values can be:
NaN
s in numeric andduration
arraysNaT
s indatetime
arraysmissing strings in string array
undefined values in categorical arrays
To include rows where the grouping variables have missing values,
consider using the groupsummary
function instead.
S
can have row labels along its first dimension. If
S
is a table, then it can have row names as the
labels. If S
is a timetable, then it must have row
times as the labels. unstack
can treat row labels
as grouping variables.
If you do not specify
'GroupingVariables'
, andS
is a timetable, thenunstack
treats the row times as a grouping variable.If you specify
'GroupingVariables'
, andS
has row names or row times, thenunstack
does not treat them as grouping variables, unless you include them in the value of'GroupingVariables'
.
ConstantVariables
— Variables constant within a group
positive integer | vector of positive integers | string array | character vector | cell array of character vectors | pattern
scalar | logical vector
Variables constant within a group, specified as the comma-separated
pair consisting of 'ConstantVariables'
and a positive
integer, vector of positive integers, string array, character vector,
cell array of character vectors, pattern
scalar, or logical vector.
The values for these variables in U
are taken from
the first row in each group in S
.
You can include the row names or row times of S
when you specify the value of
'ConstantVariables'
.
NewDataVariableNames
— Names for new data variables in U
cell array of character vectors | string array
Names for the new data variables in U
, specified as
the comma-separated pair consisting of
'NewDataVariableNames'
and a cell array of
character vectors or string array.
If you do not specify 'NewDataVariableNames'
, then
unstack
creates names for the new data
variables in U
based on values in the indicator
variable specified by ivar
.
AggregationFunction
— Aggregation function to apply to data variables
@sum
(numeric data) or
@unique
(nonnumeric data) (default) | function handle
Aggregation function to apply to data variables, specified as the
comma-separated pair consisting of
'AggregationFunction'
and a function handle.
unstack
applies this function to rows from the
same group that have the same value in ivar
. The
function must aggregate the data values into one output value.
If you do not specify the value of
'AggregationFunction'
, then
unstack
uses different default aggregation
functions depending on data type.
For numeric data, the default aggregation function is
sum
.For nonnumeric data, the default aggregation function is
unique
.
If there are no data values to aggregate, because there are no data
values corresponding to a given indicator value in
ivar
after unstacking, then
unstack
must fill an empty element in the
unstacked output table. In that case, unstack
either fills in a missing value or calls the user-supplied aggregation
function with an empty array as input. In the latter case, the value
that unstack
fills in depends on what the
aggregation function returns when there is no data to aggregate.
Result When There Is No Data for Given Indicator Value | Fill Value Inserted into Empty Element of Unstacked Table |
---|---|
Aggregation function is one of the default functions. | Missing value of the appropriate data type,
such as a |
Aggregation function is a user-supplied function. When given an empty array as input, it returns an empty array. | Missing value of the appropriate data type,
such as a Example: If the aggregation
function is |
Aggregation function is a user-supplied function. When given an empty array as input, it returns a scalar. | Scalar returned from the aggregation function. Example: If the aggregation function
is |
Aggregation function is a user-supplied function. It returns a vector, matrix, or multidimensional array. |
|
Aggregation function raises an error. |
|
VariableNamingRule
— Rule for naming variables in U
'modify'
(default) | 'preserve'
Rule for naming variables in U
, specified as the
comma-separated pair consisting of
'VariableNamingRule'
and either the value
'modify'
or 'preserve'
.
The values of 'VariableNamingRule'
specify the
following rules for naming variable in the output table or
timetable.
Value of
| Rule |
---|---|
| Modify names taken from the input table or timetable so that the corresponding variable names in the output are also valid MATLAB® identifiers. |
| Preserve original names taken from the input table or timetable. The corresponding variable names in the output can have any Unicode® characters, including spaces and non-ASCII characters. Note: In some cases,
|
Output Arguments
U
— Output table
table | timetable
Output table, returned as a table or a timetable. U
contains the unstacked data variables, the grouping variables, and the first
value of each group from any constant variables.
The order of the data in U
is based on the order of the
unique values in the grouping variables.
You can store additional metadata such as descriptions, variable units,
variable names, and row names in U
. For more information,
see the Properties sections of table
or timetable
.
is
— Index to S
column vector
Index to S
, returned as a column vector. For each row
in U
, the index vector, is
, identifies
the index of the first value in the corresponding group of rows in
S
.
More About
Grouping Variables
Grouping variables are utility variables used to group, or categorize, data. Grouping variables are useful for summarizing or visualizing data by group. You can define groups in your table by specifying one or more grouping variables.
A grouping variable can be any of the following:
Categorical vector
String array
Cell array of character vectors
Numeric vector, typically containing positive integers
Logical vector
datetime
orduration
vector
Rows where the grouping variables have the sames value belong to the same group.
If the grouping variables have missing values, then unstack
excludes the corresponding rows of the input table. It groups data and unstacks
results without data from those rows. Missing values are values such as
NaN
s, NaT
s, missing strings, and undefined
categorical values.
Tips
You can specify more than one data variable in
S
, and each variable becomes a set of unstacked data variables inU
. Use a vector of positive integers, a cell array or string array containing multiple variable names, or a logical vector to specifyvars
. The one indicator variable, specified by the input argument,ivar
, applies to all data variables specifies byvars
.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:
The
'NewDataVariableNames'
name-value argument must be specified. Its value must be constant.The
vars
andivars
input arguments (data variables and indicator variables) must be constant.If you specify grouping variables and constant variables, then they must be constant.
If you specify an aggregation function, then it must be constant.
If the input is a timetable with regular row times and you specify grouping variables that do not include the row times, then the output timetable might have irregular row times. Even though the intervals between output row times might look the same, the output timetable considers the vector of row times to be irregular.
If a variable of the input table or timetable is a cell array of character vectors, then
unstack
fills empty cells in the corresponding output variable with 1-by-0 character arrays in the generated code. In MATLAB,unstack
fills such gaps with 0-by-0 character arrays.The
unstack
function does not support code generation when the input table or timetable has a variable that is a heterogeneous cell array that cannot be converted to a homogeneous cell array.If the input has a variable that is a homogeneous cell array, or that can be converted to one, then the
'AggregationFunction'
name-value argument must be specified. The default value of'AggregationFunction'
is'unique'
. But theunique
function does not support cell arrays.
The
vars
input argument and the values of the'GroupingVariables'
and'ConstantVariables'
name-value arguments do not support pattern expressions.
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool
or accelerate code with Parallel Computing Toolbox™ ThreadPool
.
Version History
Introduced in R2013bR2020a: Default aggregation function for nonnumeric data
In R2020a, if you do not specify the 'AggregationFunction'
name-value pair argument, then the default aggregation function for nonnumeric data
is the unique
function. In previous releases, there was no
default aggregation function for nonnumeric data, so unstack
would raise an error.
R2020a: Behavior changes when the aggregation function has no data to aggregate
In R2020a, there are behavior changes when the aggregation function has no data to
aggregate. This situation can occur when there are no data values that correspond to
values in the indicator variable after unstacking. In such cases,
unstack
essentially calls the aggregation function on an
empty array.
Value Returned by Aggregation Function When No Data to Aggregate | Behavior in R2020a | Behavior in Previous Releases |
---|---|---|
Data variable is numeric and the aggregation function raises an error. |
|
|
Data variable is nonnumeric and the aggregation function returns an empty array. |
|
|
Data variable is numeric and the aggregation function
returns a scalar value (for example, |
|
|
Data variable is numeric and the aggregation function returns a vector, matrix, or multidimensional array. |
|
|
See Also
Functions
stack
|pivot
|join
|rowfun
|varfun
|splitapply
|groupsummary
Live Editor Tasks
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)