# ned2lla

Transform local north-east-down coordinates to geodetic coordinates

## Syntax

``lla = ned2lla(xyzNED,lla0,method)``

## Description

example

````lla = ned2lla(xyzNED,lla0,method)` transforms the local north-east-down (NED) Cartesian coordinates `xyzNED` to geodetic coordinates `lla`. Specify the origin of the local NED system as the geodetic coordinates `lla0`. NoteThe latitude and longitude values in the geodetic coordinate system use the World Geodetic System of 1984 (WGS84) standard.Specify altitude as height in meters above the WGS84 reference ellipsoid. ```

## Examples

collapse all

Specify the geodetic coordinates of the local origin in Zermatt, Switzerland.

`lla0 = [46.017 7.750 1673]; % [lat0 lon0 alt0]`

Specify the NED coordinates of a point of interest, in meters. In this case, the point of interest is the Matterhorn.

`xyzNED = [-4556.3 -7134.8 -2852.4]; % [xNorth yEast zDown]`

Transform the local NED coordinates to geodetic coordinates using flat earth approximation.

`lla = ned2lla(xyzNED,lla0,'flat')`
```lla = 1×3 103 × 0.0460 0.0077 4.5254 ```

## Input Arguments

collapse all

Local NED Cartesian coordinates, specified as a three-element row vector or an n-by-3 matrix. n is the number of points to transform. Specify each point in the form ```[xNorth yEast zDown]```. xNorth, yEast, and zDown are the respective x-, y-, and z-coordinates, in meters, of the point in the local NED system.

Example: `[-4556.3 -7134.8 -2852.4]`

Data Types: `double`

Origin of the local NED system with the geodetic coordinates, specified as a three-element row vector or an n-by-3 matrix. n is the number of origin points. Specify each point in the form ```[lat0 lon0 alt0]```. lat0 and lon0 specify the latitude and longitude respectively in degrees. alt0 specifies the altitude in meters.

Example: `[46.017 7.750 1673]`

Data Types: `double`

Transformation method, specified as `'flat'` or `'ellipsoid'`. This argument specifies whether the function assumes the planet is flat or ellipsoidal.

The flat Earth transformation method has these limitations:

• Assumes that the flight path and bank angle are zero.

• Assumes that the flat Earth z-axis is normal to the Earth at only the initial geodetic latitude and longitude. This method has higher accuracy over small distances from the initial geodetic latitude and longitude, and closer to the equator. The method calculates a longitude with higher accuracy when the variation in latitude is smaller.

• Latitude values of +90 and -90 degree may return unexpected values because of singularity at the poles.

Data Types: `char` | `string`

## Output Arguments

collapse all

Geodetic coordinates, returned as a three-element row vector or an n-by-3 matrix. n is the number of transformed points. Each point is in the form ```[lat lon alt]```. lat and lon specify the latitude and longitude, respectively, in degrees. alt specifies the altitude in meters.

Data Types: `double`

## Version History

Introduced in R2021a