Documentation

# showproblem

Display optimization problem

## Syntax

``showproblem(prob)``

## Description

example

````showproblem(prob)` displays the objective function, constraints, and bounds of `prob`.```

## Examples

collapse all

Create an optimization problem, including an objective function and constraints, and display the problem.

Create the problem in Mixed-Integer Linear Programming Basics: Problem-Based.

```steelprob = optimproblem; ingots = optimvar('ingots',4,1,'Type','integer','LowerBound',0,'UpperBound',1); alloys = optimvar('alloys',4,1,'LowerBound',0); weightIngots = [5,3,4,6]; costIngots = weightIngots.*[350,330,310,280]; costAlloys = [500,450,400,100]; cost = costIngots*ingots + costAlloys*alloys; steelprob.Objective = cost; totalweight = weightIngots*ingots + sum(alloys); carbonIngots = [5,4,5,3]/100; carbonAlloys = [8,7,6,3]/100; totalCarbon = (weightIngots.*carbonIngots)*ingots + carbonAlloys*alloys; molybIngots = [3,3,4,4,]/100; molybAlloys = [6,7,8,9]/100; totalMolyb = (weightIngots.*molybIngots)*ingots + molybAlloys*alloys; steelprob.Constraints.conswt = totalweight == 25; steelprob.Constraints.conscarb = totalCarbon == 1.25; steelprob.Constraints.consmolyb = totalMolyb == 1.25;```

Display the problem.

`showproblem(steelprob)`
``` OptimizationProblem : Solve for: alloys, ingots minimize : 1750*ingots(1) + 990*ingots(2) + 1240*ingots(3) + 1680*ingots(4) + 500*alloys(1) + 450*alloys(2) + 400*alloys(3) + 100*alloys(4) subject to conswt: 5*ingots(1) + 3*ingots(2) + 4*ingots(3) + 6*ingots(4) + alloys(1) + alloys(2) + alloys(3) + alloys(4) == 25 subject to conscarb: 0.25*ingots(1) + 0.12*ingots(2) + 0.2*ingots(3) + 0.18*ingots(4) + 0.08*alloys(1) + 0.07*alloys(2) + 0.06*alloys(3) + 0.03*alloys(4) == 1.25 subject to consmolyb: 0.15*ingots(1) + 0.09*ingots(2) + 0.16*ingots(3) + 0.24*ingots(4) + 0.06*alloys(1) + 0.07*alloys(2) + 0.08*alloys(3) + 0.09*alloys(4) == 1.25 variable bounds: 0 <= alloys(1) 0 <= alloys(2) 0 <= alloys(3) 0 <= alloys(4) 0 <= ingots(1) <= 1 0 <= ingots(2) <= 1 0 <= ingots(3) <= 1 0 <= ingots(4) <= 1 ```

## Input Arguments

collapse all

Optimization problem or equation problem, specified as an `OptimizationProblem` object or an `EquationProblem` object. Create an optimization problem by using `optimproblem`; create an equation problem by using `eqnproblem`.

### Warning

The problem-based approach does not support complex values in an objective function, nonlinear equalities, or nonlinear inequalities. If a function calculation has a complex value, even as an intermediate value, the final result can be incorrect.

Example: ```prob = optimproblem; prob.Objective = obj; prob.Constraints.cons1 = cons1;```

Example: `prob = eqnproblem; prob.Equations = eqs;`

## Compatibility Considerations

expand all

Not recommended starting in R2019b