Main Content


System object: phased.MVDREstimator
Namespace: phased

Plot spatial spectrum


hl = plotSpectrum(___)


plotSpectrum(estimator) plots the spatial spectrum resulting from the most recent execution of the object.

plotSpectrum(estimator,Name,Value) plots the spatial spectrum with additional options specified by one or more Name,Value pair arguments.

hl = plotSpectrum(___) returns the line handle in the figure.

Input Arguments


Spatial spectrum estimator object.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.


Set this value to true to plot the normalized spectrum. Setting this value to false plots the spectrum without normalization.

Default: false


Character vector to use as figure title.

Default: ''


Plot units, specified as 'db', 'mag', or 'pow'.

Default: 'db'


expand all

First, estimate the DOAs of two signals received by a standard 10-element ULA with element spacing of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the first signal is 10° in azimuth and 20° in elevation. The direction of the second signal is 60° in azimuth and −5° in elevation. Then, plot the MVDR spatial spectrum.

Create the signals with added noise. Then, create the ULA System object™.

fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.ULA('NumElements',10,'ElementSpacing',1);
array.Element.FrequencyRange = [100e6 300e6];
fc = 150.0e6;
x = collectPlaneWave(array,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x)) + 1i*randn(size(x)));

Construct MVDR estimator System object.

estimator = phased.MVDREstimator('SensorArray',array,...

Estimate the DOAs.

[y,doas] = estimator(x + noise);
doas = broadside2az(sort(doas),[20 -5])
doas = 1×2

    9.5829   60.3813

Plot the spectrum.