Main Content

rpnClassificationLayer

Classification layer for region proposal networks (RPNs)

Description

A region proposal network (RPN) classification layer classifies image regions as either object or background by using a cross entropy loss function. Use this layer to create a Faster R-CNN object detection network.

Creation

Description

layer = rpnClassificationLayer creates a two-class classification layer for a Faster R-CNN object detection network.

example

layer = rpnClassificationLayer('Name',Name) creates a two-class classification layer and sets the optional Name property.

Properties

expand all

Layer name, specified as a character vector or a string scalar. For Layer array input, the trainNetwork (Deep Learning Toolbox), assembleNetwork (Deep Learning Toolbox), layerGraph (Deep Learning Toolbox), and dlnetwork (Deep Learning Toolbox) functions automatically assign names to layers with the name ''.

Data Types: char | string

This property is read-only.

Number of inputs of the layer. This layer accepts a single input only.

Data Types: double

This property is read-only.

Input names of the layer. This layer accepts a single input only.

Data Types: cell

Examples

collapse all

Create an RPN softmax layer with the name 'rpn_softmax'.

rpnSoftmax = rpnSoftmaxLayer('Name','rpn_softmax')
rpnSoftmax = 
  RPNSoftmaxLayer with properties:

    Name: 'rpn_softmax'

Create an RPN classification layer with the name 'rpn_cls'.

rpnClassification = rpnClassificationLayer('Name','rpn_cls')
rpnClassification = 
  RPNClassificationLayer with properties:

    Name: 'rpn_cls'

Add the RPN softmax and RPN classification layers to a Layer array, to form the classification branch of an RPN.

numAnchors = 3;
rpnClassLayers = [
    convolution2dLayer(1,numAnchors*2,'Name','conv1x1_box_cls')
    rpnSoftmax
    rpnClassification
    ]
rpnClassLayers = 
  3x1 Layer array with layers:

     1   'conv1x1_box_cls'   2-D Convolution             6 1x1 convolutions with stride [1  1] and padding [0  0  0  0]
     2   'rpn_softmax'       RPN Softmax                 rpn softmax
     3   'rpn_cls'           RPN Classification Output   cross-entropy loss with 'object' and 'background' classes

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Version History

Introduced in R2018b