solving transcendental equation numerically
24 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I am trying to solve the 2 transcendental equations for 2 variables A,M for the given L
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
equation1 = A^3 - L*A^2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L*A^2/2*(sqrt(M^2-1) + (M^2-2)*acos(1/M)) + 4*L^2*A/3*(sqrt(M^2-1)*acos(1/M)-M+1)-1;
can any one help me how to solve it numerically
0 Commenti
Risposte (2)
Mischa Kim
il 16 Gen 2014
Modificato: Mischa Kim
il 16 Gen 2014
Hello vijay, what are the equations equal to? Zero? In other words,
0 = A^3 - L*A^2.*(sqrt(M.^2 - 1) + M.^2.*acos(1./M)) - PBAR;
0 = L*A^2/2*(sqrt(M^2 - 1) + (M^2 - 2)*acos(1/M)) + 4*L^2*A/3*(sqrt(M^2 - 1)*acos(1/M) - M+1)-1;
If so, this is a root-finding problem: find A and M such that the two equations are satisfied. There is plenty of literature on solving systems of non-linear equations.
Try Newton-Raphson. The challenge you might run into is to find good starting values for the search, such that the algorithm coverges properly. Also be aware that there could be multiple soulutions to your problem.
0 Commenti
Azzi Abdelmalek
il 16 Gen 2014
M=sym('M',[1,5])
A=sym('A',[1 5])
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
equation1 = A.^3 - L.*A^.2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L.*A.^2/2.*(sqrt(M.^2-1) + (M^.2-2).*acos(1./M)) + 4*L.^2.*A/3.*(sqrt(M.^2-1).*acos(1./M)-M+1)-1;
solve([equation1;equation2])
4 Commenti
Azzi Abdelmalek
il 16 Gen 2014
syms A M
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
for k=1:numel(L)
equation1 = A.^3 - L(k).*A^.2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L(k).*A.^2/2.*(sqrt(M.^2-1) + (M^.2-2).*acos(1./M)) + 4*L(k).^2.*A/3.*(sqrt(M.^2-1).*acos(1./M)-M+1)-1;
sol=solve([equation1;equation2]);
M1(k,1)=sol.M
A1(k,1)=sol.A
end
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!