Constrained linear least squares
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Hi everyone! I have a set of data such as:
y=[0.007696733 0.004758526 0.00547575 0.009628829 0.009749457 0.009073008 0.009647521 0.009795106 0.014071997 0.014208544 0.01758061 0.015072178 0.018425671 0.019217437 0.020314108 0.018246917 0.022694743 0.041827743 0.040799924 0.033812901 0.043516698];
y(t)=y(2:n);
y(t-1)=y(1:n-1);
I want to figure out the two parameters [b,c] of: y(t)=(1+b)*y(t-1)-b/c*(y(t-1))^2
What's more the two parameters need to be over 0;
Thank you so much for reading my question!
0 Commenti
Risposte (1)
Star Strider
il 1 Lug 2014
Modificato: Star Strider
il 1 Lug 2014
It is actually nonlinear, because it is nonlinear in the parameters (the partial derivatives of the function with respect to each parameter are functions of themselves or of other parameters).
Using lsqcurvefit (Optimization Toolbox), the code is:
n = length(y);
yd = y(2:n);
yi = y(1:n-1);
f = @(B,y) (1 + B(1)).*y - (B(1)./B(2)).*y.^2; % Objective function
yp = linspace(min(yi), max(yi)); % Plot vector for ‘yi’
bc = lsqcurvefit(f, rand(2,1)*100, yi, yd, [1; 1]*eps, [Inf; Inf])
figure(1)
plot(yd, yi, 'xb')
hold on
plot(yp, f(bc,yp), '-r')
hold off
grid
The fit produces:
b = 2.989459285195542E-01
c = 3.990401160101856E-02
b/c = 7.491625942488537E+00
0 Commenti
Vedere anche
Categorie
Scopri di più su Systems of Nonlinear Equations in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!