How can I evaluate the custom curve fitting result
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Hi everyone!
As the title above? How can I figure out an index such as R-square to evaluate the custom curve fitting result? my solution: X=1:21; Y=[]; Custom function : Y=1./(1+exp(a*X+b)) After simplified: y=LN(1./Y-1)=a*X+b; The problem is transformed into a linear regression problem;
if true
p=polyfit(X,y,1);
x1=linspace(min(X),max(X));
py=1./(1+exp(a*x+b));
n=size(Y);
xba=mean(X);
yba=mean(py);
fengzi=0;
fengmuX=0;
fengmuY=0;
for i=1:n
fengzi=fengzi+((x(i)-xba)*(y(i)-yba));
fengmuX=fengmuX+(x(i)-xba)^2;
fengmuY=fengmuY+(y(i)-yba)^2;
end
fengmu=(fengmuX*fengmuY)^0.5;
R=fengzi/fengmu;
R-square=R*R;
end
Is that right?
0 Commenti
Risposte (1)
Star Strider
il 6 Lug 2014
It is incorrectly transformed into a linear regression problem. Taking the log of Y converts additive errors into multiplicative errors, violating the assumptions of least-squares parameter estimation. Only in the complete absence of noise will the estimated parameters be accurate.
It is relatively easy to use fminsearch to do a nonlinear curve fit to your exponential equation, and if your model is appropriate for your data, the estimated parameters will be reasonably accurate.
For example:
X=1:21;
Y=[something];
Yest = @(b,x) 1./(1+exp(b(1).*x+b(2))); % Objective function
OLS = @(b) sum((Y - Yest(b,X)).^2); % Cost function
b = fminsearch(OLS, [1; 1]) % Estimate parameters
Yfit = Yest(b,X); % Estimated Y-values
figure(1) % Plot data & fitted curve
plot(X, Y, '*r')
hold on
plot(X, Yfit, '-b')
hold off
grid
There are several ways to evaluate the fit. Probably the easiest is to create a (21 x 2) matrix of [Y; Yfit]' then call corrcoef:
[R, P, RLO, RUP] = corrcoef([Y; Yfit]')
0 Commenti
Vedere anche
Categorie
Scopri di più su Linear and Nonlinear Regression in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!