Solving two systems of DEs using the ode45 function.

25 visualizzazioni (ultimi 30 giorni)
I am trying to solve two systems of differential equations in variables x1, x2, x3 using the ode45 function. The equations are given below:
dx1=-2*lambda*beta*x1+2*lambda*alpha*x2+lambda^2*sigma^2;
dx2=beta*x1-(alpha+lambda*beta)*x2+lambda*alpha*x3;
dx3=2*beta*x2-2*alpha*x3;
where alpha=alpha0+alpha1*t and beta=beta0+beta1*t and alpha0, alpha1, beta0, beta1, sigma, lambda are known constants.
The values I am trying to find are X1, X2 and X3. The derivatives of these desired values are given by:
dX1=beta*x1;
dX2=alpha*x2;
dX3=x3;
I am having difficulties implementing the above using the ode45 function given that the problem is defined by two sets of simultaneous differential equations. Any suggestions as to how this can be solved would be much appreciated. Thanks.

Risposta accettata

Mischa Kim
Mischa Kim il 23 Lug 2014
Vassil, check out
function my_ode()
alpha0 = 1;
alpha1 = 1;
beta0 = 1;
beta1 = 1;
lambda = 1;
sigma = 1;
param = [alpha0; alpha1; beta0; beta1; lambda; sigma];
[t,X] = ode45(@EOM,[0 5],[1 2 3 4 5 6],[],param);
plot(t,X(:,1))
grid
end
function dX = EOM(t,x,param)
x1 = x(1);
x2 = x(2);
x3 = x(3);
alpha0 = param(1);
alpha1 = param(2);
beta0 = param(3);
beta1 = param(4);
lambda = param(5);
sigma = param(6);
alpha = alpha0+alpha1*t;
beta = beta0+beta1*t;
dx1 = -2*lambda*beta*x1+2*lambda*alpha*x2+lambda^2*sigma^2;
dx2 = beta*x1-(alpha+lambda*beta)*x2+lambda*alpha*x3;
dx3 = 2*beta*x2-2*alpha*x3;
dX1 = beta*x1;
dX2 = alpha*x2;
dX3 = x3;
dX = [dx1; dx2; dx3; dX1; dX2; dX3];
end

Più risposte (0)

Categorie

Scopri di più su Numerical Integration and Differential Equations in Help Center e File Exchange

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by