ODE45 returns NaN values.
8 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Bhanu Pratap Akherya
il 23 Ago 2021
Commentato: Star Strider
il 24 Ago 2021
The ODE45 function is returning a NaN value for the dy. I am a beginner at MATLAB coding, I do not know where the issue is. Can anyone help? Also I have attached the .xlsx file.
Here is my code:
Main code:
clear all
clc
global K M C u;
Ne=6;
l=1; %length
t=0.02; %thickness
b=0.02; %width
modulus=2e11; %(E)
area=b*t;
imoment=(b*((t)^3))/12;
Le=l/Ne; %length of element
Rho=7850; %density
%Element stiffness matrix
K1=(modulus*imoment/(Le^3))*[12,6*Le,-12,6*Le; ...
6*Le,4*Le*Le,-6*Le,2*Le*Le; ...
-12,-6*Le,12,-6*Le; ...
6*Le,2*Le*Le,-6*Le,4*Le*Le];
Kglobal=zeros(2*(Ne+1),2*(Ne+1));
M1=[156 22*Le 54 -13*Le;...
22*Le 4*Le*Le 13*Le -3*Le*Le;...
54 13*Le 156 -22*Le;...
-13*Le -3*Le*Le -22*Le 4*Le*Le]*(Rho*Le*b*t)/420;
Mglobal=zeros(2*(Ne+1),2*(Ne+1));
for ii=1:Ne
Kglobal(2*ii-1:2*(ii+1),2*ii-1:2*(ii+1))=Kglobal(2*ii-1:2*(ii+1),2*ii-1:2*(ii+1))+K1;
Mglobal(2*ii-1:2*(ii+1),2*ii-1:2*(ii+1))=Mglobal(2*ii-1:2*(ii+1),2*ii-1:2*(ii+1))+M1;
end
K=Kglobal;
K(1:2,:)=[];
K(:,1:2)=[];
M=Mglobal;
M(1:2,:)=[];
M(:,1:2)=[];
C=0.05*Kglobal;
C(1:2,:)=[];
C(:,1:2)=[];
K
M
C
u=(2*Ne)+1;
dt=0.001;
T=300;
%Displacement initials
y0=zeros(2*(2*(Ne+1))-4,1);
y0(end-1,1)=0.5;
%ODE function
a=xlsread('l&d.xlsx');
t_array = a(1,:); % This is t array from xls file
f_array = a(2,:); % This is F array from xls file
[tsol ysol]=ode45(@(t, y) beam_function(t, y, t_array, f_array),[1:dt:T],y0);
plot(tsol,ysol(:,Ne))
Function code:
function [dy]=beam_function(t,y, t_array, f_array)
global K M C u;
F = interp1(t_array,f_array,t);
dy=[y(u:end);
M\(F-K*y(1:u-1)-C*y(u:end))]
0 Commenti
Risposta accettata
Star Strider
il 23 Ago 2021
Adding:
% Qt = [t>=min(t_array) t<=max(t_array)]
to the ‘beam_function’ code demonstrates the problem. The ‘t’ value is always greater than the highest value of ‘t_array’ so interp1 returns NaN since it is not instructed on how to extrapolate. Adding that capability, and changing the solver to ode15s (since this is apparently a ‘stiff’ system) returns these results —
% global K M C u;
Ne=6;
l=1; %length
t=0.02; %thickness
b=0.02; %width
modulus=2e11; %(E)
area=b*t;
imoment=(b*((t)^3))/12;
Le=l/Ne; %length of element
Rho=7850; %density
%Element stiffness matrix
K1=(modulus*imoment/(Le^3))*[12,6*Le,-12,6*Le; ...
6*Le,4*Le*Le,-6*Le,2*Le*Le; ...
-12,-6*Le,12,-6*Le; ...
6*Le,2*Le*Le,-6*Le,4*Le*Le];
Kglobal=zeros(2*(Ne+1),2*(Ne+1));
M1=[156 22*Le 54 -13*Le;...
22*Le 4*Le*Le 13*Le -3*Le*Le;...
54 13*Le 156 -22*Le;...
-13*Le -3*Le*Le -22*Le 4*Le*Le]*(Rho*Le*b*t)/420;
Mglobal=zeros(2*(Ne+1),2*(Ne+1));
for ii=1:Ne
Kglobal(2*ii-1:2*(ii+1),2*ii-1:2*(ii+1))=Kglobal(2*ii-1:2*(ii+1),2*ii-1:2*(ii+1))+K1;
Mglobal(2*ii-1:2*(ii+1),2*ii-1:2*(ii+1))=Mglobal(2*ii-1:2*(ii+1),2*ii-1:2*(ii+1))+M1;
end
K=Kglobal;
K(1:2,:)=[];
K(:,1:2)=[];
M=Mglobal;
M(1:2,:)=[];
M(:,1:2)=[];
C=0.05*Kglobal;
C(1:2,:)=[];
C(:,1:2)=[];
K
M
C
u=(2*Ne)+1;
dt=0.001;
T=300;
%Displacement initials
y0=zeros(2*(2*(Ne+1))-4,1);
y0(end-1,1)=0.5;
%ODE function
% a=xlsread('l&d.xlsx');
a = readmatrix('https://www.mathworks.com/matlabcentral/answers/uploaded_files/719254/l&d.xlsx')
t_array = a(1,:); % This is t array from xls file
f_array = a(2,:); % This is F array from xls file
[tsol ysol]=ode15s(@(t, y) beam_function(t, y, t_array, f_array, K, M, C, u),[1:dt:T],y0);
plot(tsol,ysol(:,Ne))
function [dy]=beam_function(t,y, t_array, f_array, K, M, C, u)
% global K M C u;
F = interp1(t_array,f_array,t, 'linear','extrap');
dy=[y(u:end);
M\(F-K*y(1:u-1)-C*y(u:end))];
end
If you want different results, it will be necessary to scale ‘t’ to be within the limits of ‘t_array’ so that the interpolation works without the need to extrapolate.
I also eliminated the global variables and passed them as extra parameters to ‘beam_funciton’. See Passing Extra Parameters for details.
.
4 Commenti
Star Strider
il 24 Ago 2021
As always, my pleasure!
Essentially, yes. The ‘F’ value is interpolated (or extrapolated) from the existing data vectors to the current value of ‘t’ passed to it from ode15s in each call to it. So, it returns one value interpolated (or extrapolated) from ‘t_array’ and ‘f_array’ for each value of ‘t’ presented to it in each call to ‘beam_function’.
.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Special Functions in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!