how to get tf answer for this problem?
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
arian hoseini
il 12 Gen 2022
Commentato: Star Strider
il 12 Gen 2022
a=[40]
b=[0.05 1]
c=[1]
d=[0.5 1]
e=[0.8]
f=[1 1]
g=[0.1]
h=[0.04 1]
T1=tf(a,b)
T2=tf(c,d)
T3=tf(e,f)
T4=tf(g,h)
A=(T1*T2*T3)
B=(T1*T2*T4)
C=1+B+A
A/C
i want A to be like this 32/((1+.05s)(1+0.5s)(1+s)) is this possible
0 Commenti
Risposta accettata
Star Strider
il 12 Gen 2022
Almost.
a=[40];
b=[0.05 1];
c=[1];
d=[0.5 1];
e=[0.8];
f=[1 1];
g=[0.1];
h=[0.04 1];
T1=tf(a,b);
T2=tf(c,d);
T3=tf(e,f);
T4=tf(g,h);
A=(T1*T2*T3)
Azpk = zpk(A)
B=(T1*T2*T4)
Bzpk = zpk(B)
C=1+B+A
Czpk = zpk(C)
AC = A/C
ACzpk = zpk(AC)
Amr = minreal(A)
Amrzpk = zpk(Amr)
Bmr = minreal(B)
Bmrzpk = zpk(Bmr)
Cmr = minreal(C)
Cmrzpk = zpk(Cmr)
ACmr = minreal(AC)
ACmrzpk = zpk(ACmr)
.
2 Commenti
Star Strider
il 12 Gen 2022
My pleasure!
The form you need is not an option in any of the representations I looked through. The zpk representation is as close as it is possible to get. Dividing the transfer function by (s+20)^2 changes nothing about it.
If you absolutely must have that representation, you will need to write it yourself, or possibly use the Symbolic Math Toolbox. Special representations such as that are simply not possible in the Control System Toolbox.
s = tf('s');
a=[40];
b=[0.05 1];
c=[1];
d=[0.5 1];
e=[0.8];
f=[1 1];
g=[0.1];
h=[0.04 1];
T1=tf(a,b);
T2=tf(c,d);
T3=tf(e,f);
T4=tf(g,h);
A=(T1*T2*T3);
% Azpk = zpk(A);
B=(T1*T2*T4);
% Bzpk = zpk(B)
C=1+B+A;
% Czpk = zpk(C)
AC = A/C;
% ACzpk = zpk(AC)
% Amr = minreal(A)
% Amrzpk = zpk(Amr)
% Bmr = minreal(B)
% Bmrzpk = zpk(Bmr)
% Cmr = minreal(C)
% Cmrzpk = zpk(Cmr)
ACmr = minreal(AC);
ACmrzpk = zpk(ACmr)
.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Startup and Shutdown in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!