The pooled covariance matrix of TRAINING must be positive definite.
18 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
clc
clear all
load featurs_T
load featurs_S
load Group_Train
load Group_Test
cv_x=cov(Feat1);
[V,D] = eig(cv_x);
d=diag(D);
d=d(end:-1:1);
sm_d=cumsum(d) /sum(d);
idx=find(sm_d>0.99);
T=[V(:,end:-1:idx(1))]';
new_feat1=T*Feat1';
%TrainingSet= new_feat1';
new_feat2=T*Feat2';
%TestSet= new_feat2';
TrainingSet = new_feat1';
TestSet = new_feat2';
Group_Train1 = Group_Train1';
Group_Test1 = Group_Test1';
%------------------------
% result1= multisvm(TrainingSet,Group_Train1,TestSet,Group_Test1);
result1= classify(TestSet,TrainingSet,Group_Train1,'linear');
testresult = result1;
Accuracy = mean(Group_Test1==result) * 100;
fprintf('Accuracy = %.2f\n', Accuracy);
fprintf('error rate = %.2f\n ', mean(result ~= Group_Test1 ) * 100);
Error using classify (line 233)
The pooled covariance matrix of TRAINING must be positive definite.
Error in HOG2 (line 31)
result1= classify(TestSet,TrainingSet,Group_Train1,'linear');
5 Commenti
Risposta accettata
Matt J
il 23 Gen 2022
I suggest you calculate the pooled covariance matrix and verify whether the error message is accurate.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Deep Learning Toolbox in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
