How to perform summation with double subscript notation?
3 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Md. Golam Zakaria
il 6 Mar 2022
Commentato: Star Strider
il 6 Mar 2022
Hello everyone, I have to perform some analysis based on the following equation, which contains summation operator with double subscript notation.
I have written a code. Can anyone please look at it and confim whether I am wrong or right?
alpha =0;
for i=1:2
for j=1:2
alpha=alpha +(C(i)*A(j)*((((E-Eg(j)+Ep(i))^2)/(exp(Ep(i)/(k*T))-1))+(((E-Eg(j)-Ep(i))^2)/(1-exp(-Ep(i)/(k*T))))));
end
end
Alpha=(alpha+(Ad*((E-Egd)^(1/2))));
0 Commenti
Risposta accettata
Star Strider
il 6 Mar 2022
First, provide the ‘C’ and the other missing vectors, then save ‘alpha’ as a matrix, then use the sum function to sum its elements.
alpha =0;
for i=1:2
for j=1:2
alpha(i,j) = C(i)*A(j)*((((E-Eg(j)+Ep(i))^2)/(exp(Ep(i)/(k*T))-1)));
end
end
Alpha=(sum(alpha(:))+(Ad*((E-Egd).^(1/2))))
Try that with the vectors to see if the result is as desired.
.
4 Commenti
Star Strider
il 6 Mar 2022
I do not see anything wrong with it. The easiest way to troubleshoot it is to see what the individual terms evaluate to, and then see if those are correct —
h=4.136*10^-15; % Planck's Constant
k=8.617*10^-5; % Boltzmann's Constant
c=3*10^8; % speed of light
T=300; % Ambient Temparature
beta=7.021*10^-4;
gamma=1108;
Eg0_1=1.1557;
Eg0_2=2.5;
Egd0=3.2;
Eg1=Eg0_1-((beta*(T^2))/(T+gamma));
Eg2=Eg0_2-((beta*(T^2))/(T+gamma));
Egd=Egd0-((beta*(T^2))/(T+gamma));
Eg=[Eg1 Eg2];
Ep=[1.827*10^-2 5.773*10^-2];
C=[5.5 4.0];
A=[3.231*10^2 7.237*10^3];
Ad=1.052*10^6;
walenength=(.2*10^-6):(.0001*10^-6):(1.2*10^-6);
num=numel(walenength);
Alpha=nan(1,num);
for t=1:(num/1000)
lambda=walenength(t);
E=((h*c)/lambda);
alpha =0;
for i=1:2
for j=1:2
fprintf([repmat('—',1, 20) '\nt = %4d\ti = %d\tj = %d\n'],t,i,j)
Term_1(i,j) = (((E-Eg(j)+Ep(i))^2)./(exp(Ep(i)/(k.*T))-1))
Term_2(i,j) = (((E-Eg(j)-Ep(i))^2)/(1-exp(-Ep(i)/(k*T))))
alpha=alpha +(C(i)*A(j)*((((E-Eg(j)+Ep(i))^2)./(exp(Ep(i)/(k.*T))-1))+(((E-Eg(j)-Ep(i))^2)/(1-exp(-Ep(i)/(k*T))))));
end
end
Alpha(t)=(alpha+(Ad*((E-Egd)^(1/2))));
end
figure
plot((walenength./10^-6),real(Alpha))
hold on
plot((walenength./10^-6),imag(Alpha))
plot((walenength./10^-6),abs(Alpha),'--')
hold off
set(gca,'YScale','log')
ylim([(10^0) (10^9)])
xlabel('Wavelength \lambda ,(\mum)')
ylabel('Absorption Coefficient, \alpha(m^{-1})')
legend('Re(\alpha(T))','Im(\alpha(T))','|\alpha(T)|', 'Location','best')
See if the intermediate values appear to be correct.
.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Creating and Concatenating Matrices in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!