Fit 2 parameters with lsqcurvefit including an integral term

1 visualizzazione (ultimi 30 giorni)
Hi, I am trying to fit this function to my data. The function has 2 unknown parameter D1 and D2, everything else is known. I want to use lsqcurvefit.
I believe that my error lies in the syntax of the function handles when I want to include D_1 and D_2. If anyone can assist me trying to figure out why it isn't working properly I would really appreciate it.
I will include my code and data below.
clear; clc; clf; close all;
xdata = [10.30, 29.88, 59.64, 99.58, 149.66, 209.96, 280.44, 361.03, 451.87, 552.89, 664.10, 785.38, 916.94, 1058.68, 1210.48, 1372.58, 1544.86, 1727.33, 1919.81, 2122.64, 2335.65, 2558.64, 2792.01, 3035.55, 3289.29, 3552.97, 3827.05, 4111.33, 4405.52, 4710.15, 5024.96, 5349.96];
ydata = [1, 0.9825, 0.9389, 0.9003, 0.8492, 0.8011, 0.738, 0.6873, 0.639, 0.5807, 0.533, 0.4901, 0.4471, 0.4202, 0.3894, 0.3668, 0.3531, 0.3278, 0.3199, 0.29, 0.2965, 0.2875, 0.2764, 0.276, 0.2655, 0.2524, 0.2495, 0.2474, 0.2404, 0.2394, 0.237, 0.2242];
D0 = [0.01 0.001]; %initial guess
fun = @(x,B,D) exp(B.*(D(1)-D(2))*x.^2);
fun_2 = @(D_1, D_2, xdata) exp(-xdata.*D_2).*integral(@(x) fun(x,xdata),0,1,'ArrayValued',true);
D = lsqcurvefit(fun_2, D0, xdata, ydata);
D_1 = D(1);
D_2 = D(2);
semilogy(xdata, ydata,'ko', xdata,fun_2(D_1, D_2,xdata),'r-')
  1 Commento
Alfredo Scigliani
Alfredo Scigliani il 13 Apr 2022
Modificato: Alfredo Scigliani il 13 Apr 2022
I have added a negative sign that was missing inside the exponential and fixed parameters.

Accedi per commentare.

Risposta accettata

Star Strider
Star Strider il 13 Apr 2022
Using your posted revised code (lightly edited) —
xdata = [10.30, 29.88, 59.64, 99.58, 149.66, 209.96, 280.44, 361.03, 451.87, 552.89, 664.10, 785.38, 916.94, 1058.68, 1210.48, 1372.58, 1544.86, 1727.33, 1919.81, 2122.64, 2335.65, 2558.64, 2792.01, 3035.55, 3289.29, 3552.97, 3827.05, 4111.33, 4405.52, 4710.15, 5024.96, 5349.96];
ydata = [1, 0.9825, 0.9389, 0.9003, 0.8492, 0.8011, 0.738, 0.6873, 0.639, 0.5807, 0.533, 0.4901, 0.4471, 0.4202, 0.3894, 0.3668, 0.3531, 0.3278, 0.3199, 0.29, 0.2965, 0.2875, 0.2764, 0.276, 0.2655, 0.2524, 0.2495, 0.2474, 0.2404, 0.2394, 0.237, 0.2242];
D0 = [0.01 0.001]; %initial guess
fun = @(x,D,xdata) exp(-xdata*(D(1)-D(2))*x.^2);
fun_2 = @(D, xdata) exp(-xdata.*D(2)).*integral(@(x) fun(x,D,xdata),0,1,'ArrayValued',true);
D = lsqcurvefit(fun_2, D0, xdata, ydata);
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
D_1 = D(1)
D_1 = 0.0041
D_2 = D(2)
D_2 = -2.5016e-05
semilogy(xdata, ydata,'ko', xdata,fun_2(D,xdata),'r-')
grid
.
  2 Commenti
Alfredo Scigliani
Alfredo Scigliani il 13 Apr 2022
ohh I see what was my mistake. Defining D_1 and D_2 should be after obtaining the results of lsqcurvefit. Thank you so much!!

Accedi per commentare.

Più risposte (1)

Torsten
Torsten il 12 Apr 2022
Modificato: Torsten il 13 Apr 2022
xdata = [10.30, 29.88, 59.64, 99.58, 149.66, 209.96, 280.44, 361.03, 451.87, 552.89, 664.10, 785.38, 916.94, 1058.68, 1210.48, 1372.58, 1544.86, 1727.33, 1919.81, 2122.64, 2335.65, 2558.64, 2792.01, 3035.55, 3289.29, 3552.97, 3827.05, 4111.33, 4405.52, 4710.15, 5024.96, 5349.96];
ydata = [1, 0.9825, 0.9389, 0.9003, 0.8492, 0.8011, 0.738, 0.6873, 0.639, 0.5807, 0.533, 0.4901, 0.4471, 0.4202, 0.3894, 0.3668, 0.3531, 0.3278, 0.3199, 0.29, 0.2965, 0.2875, 0.2764, 0.276, 0.2655, 0.2524, 0.2495, 0.2474, 0.2404, 0.2394, 0.237, 0.2242];
D0 = [0.01 0.01]; %initial guess
fun = @(x,D,xdata) exp(-xdata.*(D(2)+(D(1)-D(2)).*x.^2));
fun_2 = @(D,xdata) integral(@(x) fun(x,D,xdata),0,1,'ArrayValued',true);
D = lsqcurvefit(fun_2, D0, xdata, ydata)
D_1 = D(1);
D_2 = D(2);
semilogy(xdata, ydata,'ko', xdata,fun_2(D,xdata),'r-')
  2 Commenti
Alfredo Scigliani
Alfredo Scigliani il 13 Apr 2022
Modificato: Alfredo Scigliani il 13 Apr 2022
The syntax seems to be working better but fun_2 it is missing the exponential term in front of the integration. Now if I want to include it, I don't know how the @ handle will change.
fun_2 = @ (D,xdata) exp(-xdata*D_2) *integral(@(x) fun(x,D,xdata),0,1,'ArrayValued',true);
Torsten
Torsten il 13 Apr 2022
Modificato: Torsten il 13 Apr 2022
The exponential term before the integration is included in the integral term.

Accedi per commentare.

Categorie

Scopri di più su Mathematics in Help Center e File Exchange

Prodotti


Release

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by