Eigenvectors not changing with constant parameter
2 views (last 30 days)
Show older comments
Dear All,
I am trying to calculate the eigenvectors(V) using eig() function. My 2x2 matrix(M) contains a constant parameter 'a' in it. But I see that changing a does not change my eigenvectors. Generally the eigevectors and eigenvalues change with the matrix elements. Here my eigenvalues are varying but not the eigenvectors. Could someone figure out the issue?
sx = [0 1; 1 0];
sy = [0 -1i; 1i 0];
a = 0.18851786;
kx = -0.5:0.1:0.5;
ky = kx;
for i = 1:length(kx)
for j = 1:length(ky)
M = a.*(sx.*ky(i)-sy.*kx(j));
[V,D] = eig(M);
V
end
end
0 Comments
Accepted Answer
Bruno Luong
on 23 Apr 2022
Edited: Bruno Luong
on 23 Apr 2022
"Could someone figure out the issue?"
But there is no issue beside thet fact that you expect something that not going to happen.
if V and diagonal D the eigen decomposition of A1
A1*V = V*D
then for any constant a
(a*A1)*V = V*(a*D)
Meaning V and a*D (still diagonal) are eigen decomposition of Aa := a*A1.
So A1 and Aa respective eigen decomposition can have the same V (eigen vectors, MATALB always normalized them to have norm(V(:,k),2)=1 for all k) but eigen values are proportional to a.
More Answers (1)
Walter Roberson
on 23 Apr 2022
eigenvectors are geometrically directions. When you scale a matrix by a nonzero constant, the direction does not change.
See Also
Categories
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!