Find intersections of curves
    4 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
hello, I have the following two formulas and I want to know How can I find the intersection point of the two curves and how to mark it on the graph?
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(2*bL);
f22=sin(2*(ab)*bL);
fplot(bL,f12,'-or');
hold on
fplot(bL,f22,'-ob');
thank you 
0 Commenti
Risposta accettata
  Matt J
      
      
 il 24 Apr 2022
        
      Modificato: Matt J
      
      
 il 24 Apr 2022
  
      syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(bL);
f22=sin(2*(ab)*bL);
bLmax=fzero(matlabFunction(f12-f22)  ,2 );
rts=[-bLmax,0,+bLmax];
fnum=matlabFunction(f12);
fplot(bL,f12,'-r');
hold on
fplot(bL,f22,'-b');
plot(rts,fnum(rts),'ok','MarkerFaceColor','k')
hold off
xlim([-3,3])
ylim([-0.001,0.001])
0 Commenti
Più risposte (2)
  Torsten
      
      
 il 24 Apr 2022
        bL = 0 is the intersection point.
hold on
plot(0,0,'.')
2 Commenti
  Torsten
      
      
 il 24 Apr 2022
				
      Modificato: Torsten
      
      
 il 24 Apr 2022
  
			  a = 8.0901e-5;
  fun1 = @(a,x) a*sinh(x);
  fun2 = @(a,x) sin(2*a*x);
  f=@(a,x)fun1(a,x)-fun2(a,x)
  x1 = fzero(@(x)f(a,x),[2,2.5])
  x2 = fzero(@(x)f(a,x),[-3,-2])
  x=-2.5:0.01:2.5;
  plot(x,fun1(a,x))
  hold on
  plot(x,fun2(a,x))
  hold on
  plot(x1,fun1(a,x1),'.')
  hold on
  plot(x2,fun1(a,x2),'.')
  hold on
  plot(0,0,'.')
  Sam Chak
      
      
 il 24 Apr 2022
        
      Modificato: Sam Chak
      
      
 il 24 Apr 2022
  
      Try performing analysis on the problem first, before quickly attempting to solve it. The hyperbolic sine is unbounded. Do you think there are intersections other than the trivial solution at bL = 0? Seems there are another two at  .
.
 .
.
0 Commenti
Vedere anche
Categorie
				Scopri di più su Calculus in Help Center e File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!





