Find intersections of curves

4 visualizzazioni (ultimi 30 giorni)
SAM
SAM il 24 Apr 2022
Modificato: Torsten il 24 Apr 2022
hello, I have the following two formulas and I want to know How can I find the intersection point of the two curves and how to mark it on the graph?
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(2*bL);
f22=sin(2*(ab)*bL);
fplot(bL,f12,'-or');
hold on
fplot(bL,f22,'-ob');
thank you

Risposta accettata

Matt J
Matt J il 24 Apr 2022
Modificato: Matt J il 24 Apr 2022
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(bL);
f22=sin(2*(ab)*bL);
bLmax=fzero(matlabFunction(f12-f22) ,2 );
rts=[-bLmax,0,+bLmax];
fnum=matlabFunction(f12);
fplot(bL,f12,'-r');
hold on
fplot(bL,f22,'-b');
plot(rts,fnum(rts),'ok','MarkerFaceColor','k')
hold off
xlim([-3,3])
ylim([-0.001,0.001])

Più risposte (2)

Torsten
Torsten il 24 Apr 2022
bL = 0 is the intersection point.
hold on
plot(0,0,'.')
  2 Commenti
SAM
SAM il 24 Apr 2022
I want a value other than 0
Torsten
Torsten il 24 Apr 2022
Modificato: Torsten il 24 Apr 2022
a = 8.0901e-5;
fun1 = @(a,x) a*sinh(x);
fun2 = @(a,x) sin(2*a*x);
f=@(a,x)fun1(a,x)-fun2(a,x)
x1 = fzero(@(x)f(a,x),[2,2.5])
x2 = fzero(@(x)f(a,x),[-3,-2])
x=-2.5:0.01:2.5;
plot(x,fun1(a,x))
hold on
plot(x,fun2(a,x))
hold on
plot(x1,fun1(a,x1),'.')
hold on
plot(x2,fun1(a,x2),'.')
hold on
plot(0,0,'.')

Accedi per commentare.


Sam Chak
Sam Chak il 24 Apr 2022
Modificato: Sam Chak il 24 Apr 2022
Try performing analysis on the problem first, before quickly attempting to solve it. The hyperbolic sine is unbounded. Do you think there are intersections other than the trivial solution at bL = 0? Seems there are another two at .

Categorie

Scopri di più su Mathematics in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by