Find intersections of curves
4 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
hello, I have the following two formulas and I want to know How can I find the intersection point of the two curves and how to mark it on the graph?
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(2*bL);
f22=sin(2*(ab)*bL);
fplot(bL,f12,'-or');
hold on
fplot(bL,f22,'-ob');
thank you
0 Commenti
Risposta accettata
Matt J
il 24 Apr 2022
Modificato: Matt J
il 24 Apr 2022
syms bL
ab=8.0901*10^(-5);
f12=ab*sinh(bL);
f22=sin(2*(ab)*bL);
bLmax=fzero(matlabFunction(f12-f22) ,2 );
rts=[-bLmax,0,+bLmax];
fnum=matlabFunction(f12);
fplot(bL,f12,'-r');
hold on
fplot(bL,f22,'-b');
plot(rts,fnum(rts),'ok','MarkerFaceColor','k')
hold off
xlim([-3,3])
ylim([-0.001,0.001])
0 Commenti
Più risposte (2)
Torsten
il 24 Apr 2022
bL = 0 is the intersection point.
hold on
plot(0,0,'.')
2 Commenti
Torsten
il 24 Apr 2022
Modificato: Torsten
il 24 Apr 2022
a = 8.0901e-5;
fun1 = @(a,x) a*sinh(x);
fun2 = @(a,x) sin(2*a*x);
f=@(a,x)fun1(a,x)-fun2(a,x)
x1 = fzero(@(x)f(a,x),[2,2.5])
x2 = fzero(@(x)f(a,x),[-3,-2])
x=-2.5:0.01:2.5;
plot(x,fun1(a,x))
hold on
plot(x,fun2(a,x))
hold on
plot(x1,fun1(a,x1),'.')
hold on
plot(x2,fun1(a,x2),'.')
hold on
plot(0,0,'.')
Sam Chak
il 24 Apr 2022
Modificato: Sam Chak
il 24 Apr 2022
Try performing analysis on the problem first, before quickly attempting to solve it. The hyperbolic sine is unbounded. Do you think there are intersections other than the trivial solution at bL = 0? Seems there are another two at
.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/976395/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/976390/image.png)
0 Commenti
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!