Azzera filtri
Azzera filtri

Hi all, how to create image datasets. I need them to train neural networks. I have about 15 to 20 images and I need to turn these images into an image dataset. Please.

31 visualizzazioni (ultimi 30 giorni)
I have tried to find the way to build image dataset but all of the example are using Python. But i want to use Matlab. Please help me.

Risposta accettata

Abhijit Bhattacharjee
Abhijit Bhattacharjee il 19 Mag 2022
This is easy to do in MATLAB! You can put all your images into a folder and use the imageDatastore command.
Assuming the folder of images is on the path, here is an example:
imds = imageDatastore("name_of_image_folder");
  2 Commenti
Abhijit Bhattacharjee
Abhijit Bhattacharjee il 19 Mag 2022
What you do next depends on your application. In your original question, you asked what you need to make a dataset. The code I provided should be sufficient for that.

Accedi per commentare.

Più risposte (1)

yanqi liu
yanqi liu il 20 Mag 2022
yes,sir,may be use cnn transfer to train model,such as
% use image folder to get dataset
imds = imageDatastore('MerchData','IncludeSubfolders',true,'LabelSource','foldernames');
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomized');
% use Alexnet to get cnn model
alex_net = alexnet;
class_number = length(unique(imds.Labels));
alex_net_share = alex_net.Layers(1:end-3);
alex_net_add = [
fullyConnectedLayer(class_number,'Name','fc8','WeightLearnRateFactor',10, 'BiasLearnRateFactor',20)
layers_1 = [alex_net_share
% train
augimdsTrain = augmentedImageDatastore([227 227],imdsTrain);
augimdsValidation = augmentedImageDatastore([227 227],imdsValidation);
miniBatchSize = 10;
valFrequency = floor(numel(augimdsTrain.Files)/miniBatchSize);
options = trainingOptions('sgdm', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',5, ...
'InitialLearnRate',3e-4, ...
'Shuffle','every-epoch', ...
'ValidationData',augimdsValidation, ...
'ValidationFrequency',valFrequency, ...
trainedNet = trainNetwork(augimdsTrain,layers_1,options);
% test
[YPred,probs] = classify(trainedNet,augimdsValidation);
accuracy = mean(YPred == imdsValidation.Labels)
accuracy = 1
% app
idx = randperm(numel(imdsValidation.Files),4);
for i = 1:4
I = readimage(imdsValidation,idx(i));
label = YPred(idx(i));
title(string(label) + ", " + num2str(100*max(probs(idx(i),:)),3) + "%");
  2 Commenti
Nurul Farhana Mohd Fadzli
Nurul Farhana Mohd Fadzli il 20 Mag 2022
So, if i want to use my dataset, then what part do i need to change? Is it the MerchData? I am sorry im still new to Matlab.
yanqi liu
yanqi liu il 20 Mag 2022
yes,sir,let us check the folder MerchData,we can find that one subfolder is one class,so if use our data,we can just make a new subfolder, and use name as subfolder name
then put images in it,and run code

Accedi per commentare.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by