Solve a numerical function
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I am trying to solve a numerical equation with three unkonown values Ge, G and t , thse values will be approximated by fitting the curve with the from equation (Gp) to the following data obtained.
This means that is possible to make a curve approximation in order to know the values of the G anf t terms, depending on the number of terms desired for the sum.
I would really appreciate if someone could help me please. Here is the code and the data:
clear all, close all
data1=[0.010931641 0.011369615 0.012298683];
data2=[691.5802655 719.3455778 778.7159258];
Gp=data2(1); wp=data1(1);
for i=1:11
Gp=Ge+(G(i)*wp^2*t(i)^2)/(1+wp^2*t(i)^2)
end
3 Commenti
Walter Roberson
il 27 Mag 2022
It is a curve fitting problem. You can solve for three variables if you have 3 or more points, each of which generates an implicit equation.
Risposte (1)
Sam Chak
il 28 Mag 2022
Hi Issam
From the advice of Mr. Roberson, you can create 3 equations from the data points:
691.5802655 = Ge + (G*0.010931641²*t²)/(1 + 0.010931641²*t²);
719.3455778 = Ge + (G*0.011369615²*t²)/(1 + 0.011369615²*t²);
778.7159258 = Ge + (G*0.012298683²*t²)/(1 + 0.012298683²*t²);
and then solve them simultaneously to obtain the solutions for the 3 variables:
Ge ≈ 260.642
G ≈ 2166.56
t ≈ ±45.5822
5 Commenti
Walter Roberson
il 30 Mag 2022
I only see two solutions.
In any case, why do you think that is an error?
syms Ge G1 t1 G2 t2;
w=[0.010931641 0.011369615 0.012298683];
Gp=[691.5802655 719.3455778 778.7159258];
E1= (Ge - Gp(1) + (G1*t1^2*w(1)^2)/(t1^2*w(1)^2 + 1)+(G2*t2^2*w(1)^2)/(t2^2*w(1)^2 + 1));
E11=(- Gp(1) + (G1*t1^2*w(1)^2)/(t1^2*w(1)^2 + 1)+(G2*t2^2*w(1)^2)/(t2^2*w(1)^2 + 1));
E2=(Ge - Gp(2) + (G1*t1^2*w(2)^2)/(t1^2*w(2)^2 + 1)+(G2*t2^2*w(2)^2)/(t2^2*w(2)^2 + 1));
E22=(- Gp(2) + (G1*t1^2*w(2)^2)/(t1^2*w(2)^2 + 1)+(G2*t2^2*w(2)^2)/(t2^2*w(2)^2 + 1));
E3=(Ge - Gp(3) + (G1*t1^2*w(3)^2)/(t1^2*w(3)^2 + 1)+(G2*t2^2*w(3)^2)/(t2^2*w(3)^2 + 1));
E33=(- Gp(3) + (G1*t1^2*w(3)^2)/(t1^2*w(3)^2 + 1)+ (G2*t2^2*w(3)^2)/(t2^2*w(3)^2 + 1));
sol = solve(E1,E11,E2,E22,E3,E33, Ge, G1, t1, G2, t2)
vpa(subs([Ge, G1, t1, G2, t2], sol))
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
