solving a differential equation using ode45 but the problem is i didn't get what i expected.

1 visualizzazione (ultimi 30 giorni)
i want to solve this, where σ = 0.1, L0 = 0.5, k= 0.01, tc = 70E-9
and U(Φ0) is
so that the phase difference Φ0 vs t graph and potential graph U(Φ0) vs Φ0 look like this
I m getting this
for Φ0 vs t my program is
=================================================================
ti = 0; % inital time
tf = 10E-5; % final time
tspan = [ti tf];
o =10E5;
k = 0.01; % critical coupling strength
L = 0.5;
s = 0.1;
tc = 70E-9; % photon life time in cavity
f = @(t,y) [(-(s^2)*k/tc)*sin(y - pi/2) + L*(s^2)/(2*tc)*sin(y + pi/2)/sqrt(1 + cos(y + pi/2))];
[T, Y] = ode45(f,tspan, 0);
Y = linspace(-3,3,length(Y));
U = zeros(length(Y),1) ;
for i = 1:length(Y)
U(i) = -(1E-6).*(Y(i)) - (2 + (0.1)^2 ).*((0.033)./(70E-9)).*cos(Y(i) - pi/2) + (0.5).*(((0.1)^2)./(70E-9)).*((1 + cos(Y(i) + pi/2))^(0.5));
end
plot(Y,U);
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
xlabel('\phi')
ylabel('U')
=======================================================================
for U( Φ0) vs Φ0
==========================================================================
ti = 0; % inital time
tf = 10E-5; % final time
tspan = [ti tf];
o =10E5;
k = 0.01; % critical coupling strength
L = 0.5;
s = 0.1;
tc = 70E-9; % photon life time in cavity
f = @(t,y) [(-(s^2)*k/tc)*sin(y - pi/2) + L*(s^2)/(2*tc)*sin(y + pi/2)/sqrt(1 + cos(y + pi/2))];
[T, Y] = ode45(f,tspan, 0);
Y = linspace(-3,3,length(Y));
U = zeros(length(Y),1) ;
for i = 1:length(Y)
U(i) = -(1E6).*(Y(i)) - (2 + (0.1)^2 ).*((0.033)./(70E-9)).*cos(Y(i) - pi/2) + (0.5).*(((0.1)^2)./(70E-9)).*((1 + cos(Y(i) + pi/2))^(0.5));
end
plot(Y,U);
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
xlabel('\phi')
ylabel('U')
====================================================================================
please tell me what's wrong in this program and what parameter can make my result correct?

Risposta accettata

Sam Chak
Sam Chak il 20 Lug 2022
Nothing wrong with code. The ode45 produces the solution based your given equation and input parameters.
However, one thing is obvious though. This initial value is non-zero.
f = @(t,y) [(-(s^2)*k/tc)*sin(y - pi/2) + L*(s^2)/(2*tc)*sin(y + pi/2)/sqrt(1 + cos(y + pi/2))];
[T, Y] = ode45(f,tspan, 0);
subplot(211)
plot(T, Y), xlabel('t'), ylabel('\sigma')
phase = linspace(-pi, pi, 3601);
U = - (1E-6)*phase - (2 + 0.1^2)*((0.033)/(70E-9))*cos(phase - pi/2) + 0.5*((0.1^2)/(70E-9))*sqrt(1 + cos(phase + pi/2));
subplot(212)
plot(phase, U), xlabel('\sigma'), ylabel('U')
  16 Commenti
SAHIL SAHOO
SAHIL SAHOO il 20 Lug 2022
if i don't want to use the Φ0 i obtained from the ODe45 to get U then i have to use for loop right?
Torsten
Torsten il 20 Lug 2022
Modificato: Torsten il 20 Lug 2022
No.
Z = linspace(-3,3,size(Y,1));
U = -1E6*Z - (2 + 0.1^2 )*0.033/70E-9*cos(Z - pi/2) + 0.5*0.1^2/70E-9*(1 + cos(Z + pi/2)).^0.5;
plot(Z,U)

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Mathematics in Help Center e File Exchange

Tag

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by