
solving a differential equation using ode45 but the problem is i didn't get what i expected.
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti

i want to solve this, where σ = 0.1, L0 = 0.5, k= 0.01, tc = 70E-9
and U(Φ0) is

so that the phase difference Φ0 vs t graph and potential graph U(Φ0) vs Φ0 look like this 

I m getting this

for Φ0 vs t my program is
=================================================================
ti = 0; % inital time
tf = 10E-5; % final time
tspan = [ti tf];
o =10E5;
k = 0.01; % critical coupling strength
L = 0.5;
s = 0.1;
tc = 70E-9; % photon life time in cavity
f = @(t,y) [(-(s^2)*k/tc)*sin(y - pi/2) + L*(s^2)/(2*tc)*sin(y + pi/2)/sqrt(1 + cos(y + pi/2))];
[T, Y] = ode45(f,tspan, 0);
Y = linspace(-3,3,length(Y));
U = zeros(length(Y),1) ;
for i = 1:length(Y)
U(i) = -(1E-6).*(Y(i)) - (2 + (0.1)^2 ).*((0.033)./(70E-9)).*cos(Y(i) - pi/2) + (0.5).*(((0.1)^2)./(70E-9)).*((1 + cos(Y(i) + pi/2))^(0.5));
end
plot(Y,U);
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
xlabel('\phi')
ylabel('U')
=======================================================================
for U( Φ0) vs Φ0
==========================================================================
ti = 0; % inital time
tf = 10E-5; % final time
tspan = [ti tf];
o =10E5;
k = 0.01; % critical coupling strength
L = 0.5;
s = 0.1;
tc = 70E-9; % photon life time in cavity
f = @(t,y) [(-(s^2)*k/tc)*sin(y - pi/2) + L*(s^2)/(2*tc)*sin(y + pi/2)/sqrt(1 + cos(y + pi/2))];
[T, Y] = ode45(f,tspan, 0);
Y = linspace(-3,3,length(Y));
U = zeros(length(Y),1) ;
for i = 1:length(Y)
U(i) = -(1E6).*(Y(i)) - (2 + (0.1)^2 ).*((0.033)./(70E-9)).*cos(Y(i) - pi/2) + (0.5).*(((0.1)^2)./(70E-9)).*((1 + cos(Y(i) + pi/2))^(0.5));
end
plot(Y,U);
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
xlabel('\phi')
ylabel('U')
====================================================================================
please tell me what's wrong in this program and what parameter can make my result correct?
0 Commenti
Risposta accettata
Sam Chak
il 20 Lug 2022
Nothing wrong with code. The ode45 produces the solution based your given equation and input parameters.
However, one thing is obvious though. This initial value is non-zero.

f = @(t,y) [(-(s^2)*k/tc)*sin(y - pi/2) + L*(s^2)/(2*tc)*sin(y + pi/2)/sqrt(1 + cos(y + pi/2))];
[T, Y] = ode45(f,tspan, 0);
subplot(211)
plot(T, Y), xlabel('t'), ylabel('\sigma')
phase = linspace(-pi, pi, 3601);
U = - (1E-6)*phase - (2 + 0.1^2)*((0.033)/(70E-9))*cos(phase - pi/2) + 0.5*((0.1^2)/(70E-9))*sqrt(1 + cos(phase + pi/2));
subplot(212)
plot(phase, U), xlabel('\sigma'), ylabel('U')
Più risposte (0)
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!




