How can I plot the fourier series of a rectangular pulse by calculating the coefficients?

13 visualizzazioni (ultimi 30 giorni)
I want to find the fourier series of this recangular pulse shown in the code until N by using this formula
but I don't get the desired output.here is my code.could anyone tell what is the problem of my code?
here is the output I want to get
close all; clear; clc;
N = 2;
f = @(x) rectangularPulse(-1,1,x);
x = -2:0.01:2;
%2*p is the period
p = 1;
% the main function
plot(x,f(x),'LineWidth',2);
grid;
hold on;
grid minor;
xlim([-2 2]);
ylim([-0.1 1.1]);
x = linspace(-2,2,9).';
y = linspace(0,1,0.2);
a0 = (1/(2*p))*integral(f,-p,p);
an = zeros(1,N);
bn = zeros(1,N);
for n=1:N
fan = @(x) rectangularPulse(-1,1,x).*cos((n*pi/p)*x);
an(1,n) = (1/p)*integral(fan,-p,p);
fbn = @(x) rectangularPulse(-1,1,x).*sin((n*pi/p)*x);
bn(1,n) = (1/p)*integral(fbn,-p,p);
end
fs = a0 + sum(an.*cos((1:N).*x) + bn.*sin((1:N).*x),2);
plot(x,fs,'LineWidth',2);

Risposte (1)

VBBV
VBBV il 6 Ott 2022
close all; clear; clc;
N = 2;
f = @(x) rectangularPulse(-1,1,x);
x = -2:0.001:2;
%2*p is the period
p = pi;
% the main function
plot(x,f(x),'LineWidth',2);
grid;
hold on;
grid minor;
xlim([-2 2]);
ylim([-0.1 1.1]);
x = linspace(-2,2,9).';
y = linspace(0,1,0.2);
a0 = (1/(2*p))*integral(f,-p,p);
an = zeros(1,N);
bn = zeros(1,N);
for n=1:N
fan = @(x) rectangularPulse(-1,1,x).*cos((n*pi/p)*x);
an(1,n) = (1/p)*integral(fan,-p,p);
fbn = @(x) rectangularPulse(-1,1,x).*sin((n*pi/p)*x);
bn(1,n) = (1/p)*integral(fbn,-p,p);
end
fs = a0 + sum(an.*cos((1:N).*x) + bn.*sin((1:N).*x),2);
plot(x,fs,'LineWidth',2);
  5 Commenti
VBBV
VBBV il 6 Ott 2022
If you try with N = 10 or higher it looks similar and closely approximates the rectangular pulse
VBBV
VBBV il 8 Ott 2022
Note that if you are comparing waveforms for N = 6 with other results as you shown, it may give different results. The output which you shown may have been obtained with a different upper limit summation for coefficients in the series.

Accedi per commentare.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by