Polyfit function is returning a partial line of best fit
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
Gregory Lang
il 22 Feb 2023
Commentato: William Rose
il 22 Feb 2023
When using the polyfit function to add a line of best fit for my graohs, it is returning an extremely small line of best fit. Sample code and information below
MATLAB Version: R2022b for academic use
code:
[xData, yData] = prepareCurveData(sbchl, sbb555);
ft = fittype('poly1'); %defines
[sbchl_vs_sbb555_fitresult, sbchl_vs_sbb555_gof] = fit(xData, yData, ft);
[xData, yData] = prepareCurveData(gichl, gib555);
ft = fittype('poly1'); %defines
[gichl_vs_gib555_fitresult, gichl_vs_gib555_gof] = fit(xData, yData, ft);
subplot(3,2,4);
plot(sbchl_vs_sbb555_fitresult);
hold on;
plot(sbchl,sbb555,'o');
hold on;
plot(gichl_vs_gib555_fitresult,'k');
hold on;
plot(gichl,gib555,'ok');
xlabel('Chl');
ylabel('b555');
In the subplot the line of best fit fills about 5% of the data area, if pulled to a normal figure it is covering about 50% of the figure area
0 Commenti
Risposta accettata
William Rose
il 22 Feb 2023
Since you did not include a .mat file with the data being fitted (sbchl, sbb555, gichl, gib555), others cannot run your code.
I suggest you try plotting the fit last - after plotting the actual data. The help says
plot(cfit) plots the cfit object over the domain of the current axes, if any. If there are no current axes, and fun is an output from the fit function, the plot is over the domain of the fitted data.
Therefore if you plot the fit last, it may use a larger fraction of the current axes domain.
FYI, you can include the code as code, by highlighting it, then clicking on the "code" icon at the top of the message window. Then it is runnable in the window (if you include the necessary data):
[xData, yData] = prepareCurveData(sbchl, sbb555);
and so on.
Good luck.
2 Commenti
William Rose
il 22 Feb 2023
@Gregory Lang, you are welcome. @Voss and by @Oguz Kaan Hancioglu have also provided excellent answers which I'm sure you will find helpful.
Più risposte (2)
Voss
il 22 Feb 2023
Modificato: Voss
il 22 Feb 2023
Rather than calling plot with the fitobject returned from fit, you can use coeffvalues to get the coefficients of the fitobject and then use the coefficients to plot a line across whatever domain you want.
% made up data
sbchl = 1:10;
sbb555 = rand(1,10);
gichl = 1:10;
gib555 = rand(1,10);
x_plot = [0 10]; % domain to plot fitted lines over
ft = fittype('poly1'); %defines
% [xData, yData] = prepareCurveData(sbchl, sbb555);
xData = sbchl.';
yData = sbb555.';
[sbchl_vs_sbb555_fitresult, sbchl_vs_sbb555_gof] = fit(xData, yData, ft);
% [xData, yData] = prepareCurveData(gichl, gib555);
xData = gichl.';
yData = gib555.';
[gichl_vs_gib555_fitresult, gichl_vs_gib555_gof] = fit(xData, yData, ft);
subplot(3,2,4);
hold on;
p = coeffvalues(sbchl_vs_sbb555_fitresult);
plot(x_plot, x_plot.*p(1)+p(2), 'r');
plot(sbchl,sbb555,'ro');
p = coeffvalues(gichl_vs_gib555_fitresult);
plot(x_plot, x_plot.*p(1)+p(2), 'k');
plot(gichl,gib555,'ok');
% create a legend yourself, if you still want a legend
% legend('fitted curve','data','fitted curve','data')
xlabel('Chl');
ylabel('b555');
0 Commenti
Oguz Kaan Hancioglu
il 22 Feb 2023
Your code works as expected. There is no solution for curve fitting that covers all sample points. Therefore, you can only fit the curve with errors. By modifying the curve type or order, you can decrease the error.
Subplot and plot changes the figure view.
sbchl = 1:10;
sbb555 = sbchl.^2;
gichl = 1:10;
gib555 = sbchl.^2;
[xData, yData] = prepareCurveData(sbchl, sbb555);
ft = fittype('poly1'); %defines
[sbchl_vs_sbb555_fitresult, sbchl_vs_sbb555_gof] = fit(xData, yData, ft);
[xData, yData] = prepareCurveData(gichl, gib555);
ft = fittype('poly1'); %defines
[gichl_vs_gib555_fitresult, gichl_vs_gib555_gof] = fit(xData, yData, ft);
%subplot(3,2,4);
plot(sbchl_vs_sbb555_fitresult);
hold on;
plot(sbchl,sbb555,'o');
hold on;
plot(gichl_vs_gib555_fitresult,'k');
hold on;
plot(gichl,gib555,'ok');
xlabel('Chl');
ylabel('b555');
legend off;
0 Commenti
Vedere anche
Categorie
Scopri di più su 2-D and 3-D Plots in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!